RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Curvature ductility prediction of high strength concrete beams

        Bouzid, Haytham,Kassoul, Amar Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.2

        From the structural safety point of view, ductility is an important parameter, a relatively high level of curvature ductility would provide to the structure an increased chance of survival against accidental impact and seismic attack. The ductility of reinforced concrete beams is very important, because it is the property that allows structures to dissipate energy in seismic zone. This paper presents a revision of an earlier formula for predicting the curvature ductility factor of unconfined HSC beams to make it simpler in the use. The new formula is compared with the earlier formula and other numerical and experimental results. The new formula regroups all parameters can affecting the curvature ductility of unconfined HSC beams and it has the same domain of application as the earlier formula.

      • KCI등재

        Design-oriented strength and strain models for GFRP-wrapped concrete

        Houssem Messaoud,Amar Kassoul,Abdelkader Bougara 사단법인 한국계산역학회 2020 Computers and Concrete, An International Journal Vol.26 No.3

        The aim of this paper is to develop design-oriented models for the prediction of the ultimate strength and ultimate axial strain for concrete confined with glass fiber-reinforced polymer (GFRP) wraps. Twenty of most used and recent designoriented models developed to predict the strength and strain of GFRP-confined concrete in circular sections are selected and evaluated basing on a database of 163 test results of concrete cylinders confined with GFRP wraps subjected to uniaxial compression. The evaluation of these models is performed using three statistical indices namely the coefficient of the determination (R²), the root mean square error (RMSE), and the average absolute error (AAE). Based on this study, new strength and strain models for GFRP-wrapped concrete are developed using regression analysis. The obtained results show that the proposed models exhibit better performance and provide accurate predictions over the existing models.

      • SCIESCOPUS

        An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

        Zouatnia, Nafissa,Hadji, Lazreg,Kassoul, Amar Techno-Press 2018 Geomechanics & engineering Vol.16 No.1

        In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.

      • KCI등재

        Curvature ductility prediction of high strength concrete beams

        Haytham Bouzid,Amar Kassoul 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.2

        From the structural safety point of view, ductility is an important parameter, a relatively high level of curvature ductility would provide to the structure an increased chance of survival against accidental impact and seismic attack. The ductility of reinforced concrete beams is very important, because it is the property that allows structures to dissipate energy in seismic zone. This paper presents a revision of an earlier formula for predicting the curvature ductility factor of unconfined HSC beams to make it simpler in the use. The new formula is compared with the earlier formula and other numerical and experimental results. The new formula regroups all parameters can affecting the curvature ductility of unconfined HSC beams and it has the same domain of application as the earlier formula.

      • SCIESCOPUS

        Bending analysis of FGM plates using a sinusoidal shear deformation theory

        Hadji, Lazreg,Zouatnia, Nafissa,Kassoul, Amar Techno-Press 2016 Wind and Structures, An International Journal (WAS Vol.23 No.6

        The response of functionally graded ceramic-metal plates is investigated using theoretical formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results of the new refined plate theory are presented to show the effect of the material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the static and free vibration behavior of functionally graded plates.

      • SCIESCOPUS

        A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position

        Zouatnia, Nafissa,Hadji, Lazreg,Kassoul, Amar Techno-Press 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.63 No.5

        In this paper, a hyperbolic shear deformation theory is presented for bending analysis of functionally graded beams. This theory used in displacement field in terms of thickness co-ordinate to represent the shear deformation effects and does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the virtual work principle and the physical neutral surface concept. A simply supported functionally graded beam subjected to uniformly distributed loads and sinusoidal loads are consider for detail numerical study. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

      • KCI등재

        Curvature ductility of high strength concrete beams according to Eurocode 2

        Haytham Bouzid,Amar Kassoul 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.58 No.1

        Recently, the high-strength concrete is increasingly used in the construction of reinforced concrete structures due to its benefits, but this use is influenced negatively on the local ductility of structural elements. The objective of this study is the prediction of a new approach to evaluate the curvature ductility factor of high strength concrete beams according to Eurocode 2. After the presentation of the Constitutive laws of materials and the evaluation method of curvature ductility according to the Eurocode 2, we conduct a parametric study on the factors influencing the curvature ductility of inflected sections. The calibrating of the obtained results allows predicting a very simple approach for estimating the curvature ductility factor. The proposed formula allows to calculate the curvature ductility factor of high strength concrete beams directly according to the concrete strength fck, the yield strength of steel fyk and the ratio of tension and compression reinforcements ρ and ρ' respectively, this proposed formula is validated by theoretical and experimental results of different researchers.

      • KCI등재

        Ultimate strength and strain models proposed for CFRP confined concrete cylinders

        Mohammed Berradia,Amar Kassoul 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.29 No.4

        The use of external carbon-fiber-reinforced polymer (CFRP) laminates is one of the most effective techniques existing for the confinement of circular concrete specimens. Currently, several researches have been made to develop models for predicting the ultimate conditions of this type of confinement. As most of the major existing models were developed based on limited experimental database. This paper presents the development of new confinement ultimate conditions, strength and strain models, for concrete cylinders confined with CFRP composites based on a statistical analysis of a large existing experimental database of 310 cylindrical concrete specimens wrapped with CFRP. The database is used to evaluate the performance of the proposed and major existing strength and strain models. Based on the two different statistical indices, the coefficient of determination (<i>R</i><sup>2</sup>) and the Root Mean Square Error (RMSE), the two proposed confinement ultimate conditions presents a good performance compared to the major existing models except the models of Lam and Teng (2003) and Youssef <i>et al</i>. (2007) which have relatively similar performance to the proposed models.

      • KCI등재

        Combined effect of CFRP–TSR confinement on circular reinforced concrete columns

        Mohammed Berradia,Amar Kassoul 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.19 No.1

        The use of external carbon-fiber-reinforced polymer (CFRP) wraps is one of the most effective techniques existing for the confinement of the circular concrete columns. Currently, several researches have been made to develop models for predicting the behavior of this type of confinement. The disadvantage of the most models, is to not take into account the contribution of the transverse steel reinforcements (TSR) effect, However, very limited models have been recently developed that considers this combined effect and gives less accurate results. This paper presents the development of a new model for the axial behavior of circular concrete columns confined by combining external CFRP warps-and-internal TSR (hoops or spirals) based on the existing experimental data. The comparison between the proposed model and the experimental results showed good agreement comparing to the several existing models. Moreover, the expressions of estimating the ultimate strength and the corresponding strain are simple and precise, which make it easy to use in the design applications.

      • SCIESCOPUS

        An analytical solution for bending and vibration responses of functionally graded beams with porosities

        Zouatnia, Nafissa,Hadji, Lazreg,Kassoul, Amar Techno-Press 2017 Wind and Structures, An International Journal (WAS Vol.25 No.4

        This work presents a static and free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. A new displacement field containing integrals is proposed which involves only three variables. Based on the suggested theory, the equations of motion are derived from Hamilton's principle. This theory involves only three unknown functions and accounts for parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the beam. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses and natural frequencies on the bending and free vibration responses of functionally graded beams.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼