RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Optimal Production of a Novel Furan Fatty Acid from 7,10-dihydroxy-8(E)- octadecenoic Acid by Heat Treatment

        Joel B. Ellamar,Hye-Ran Sohn,Hak-Ryul Kim 경북대학교 농업생명과학대학 2013 Current Research on Agriculture and Life Sciences Vol.31 No.1

        As a specialty oil, furan fatty acids have gained special attentions since they are known to play important roles in biological systems including human. Although several studies reported chemical synthesis of furan fatty acids, their synthesis consisted of complicated chemical multistep with chemical catalysts. Recently, a simple one-step heat treatment method was developed to produce a novel furan fatty acid, 7,10-epoxy-octadeca-7,9-dienoic acid (7,10-EODA) from a dihydroxyl fatty acid 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). In this report we studied about optimization of environmental conditions for the maximum production of 7,10-EODA from DOD by heat treatment. Production of 7,10-EODA was maximized at over 85℃ for at least over 48 hour in hexane. Solvent volume for maximum production should be over 300 mL per 10 mg DOD.

      • Optimal Production of a Novel Furan Fatty Acid from 7,10-dihydroxy-8(E)-octadecenoic Acid by Heat Treatment

        Ellamar, Joel B.,Sohn, Hye-Ran,Kim, Hak-Ryul Institute of Agricultural Science and Technology 2013 慶北大農學誌 Vol.31 No.1

        As a specialty oil, furan fatty acids have gained special attentions since they are known to play important roles in biological systems including human. Although several studies reported chemical synthesis of furan fatty acids, their synthesis consisted of complicated chemical multistep with chemical catalysts. Recently, a simple one-step heat treatment method was developed to produce a novel furan fatty acid, 7,10-epoxy-octadeca-7,9-dienoic acid (7,10-EODA) from a dihydroxyl fatty acid 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). In this report we studied about optimization of environmental conditions for the maximum production of 7,10-EODA from DOD by heat treatment. Production of 7,10-EODA was maximized at over $85^{\circ}C$ for at least over 48 hour in hexane. Solvent volume for maximum production should be over 300 mL per 10 mg DOD.

      • SCISCIESCOPUS

        One-Step Production of a Biologically Active Novel Furan Fatty Acid from 7,10-Dihydroxy-8(<i>E</i>)-octadecenoic Acid

        Ellamar, Joel B.,Song, Kyung-Sik,Kim, Hak-Ryul American Chemical Society 2011 Journal of agricultural and food chemistry Vol.59 No.15

        <P>Furan fatty acids (F-acids) gain special attention because they are known to play important roles in biological systems including humans. Specifically, F-acids are known to have strong antioxidant activitis such as radical scavenging activity. Although widely distributed in most biological systems, F-acids are trace components and their biosynthesis is complicated and quite different by sources. On the basis of biochemical study, they are considered to be an essential nutritional factor for mammals and should be provided through the diet. Hence, several studies reported the chemical synthesis of F-acids using chemical catalysts. However, chemical synthesis required complicated multiple steps. In this study was developed a simple one-step synthesis of a novel F-acid, 7,10-epoxyoctadeca-7,9-dienoic acid (EODA), from a dihydroxyl fatty acid, 7,10-dihydroxy-8(<I>E</I>)-octadecenoic acid (DOD), by heat treatment. The structure of EODA was confirmed by GC-MS, NMR, and FTIR analyses, and maximum production yield under the reaction conditions of 90 °C and 24 h reached 80%.</P>

      • SCIESCOPUSKCI등재

        Antimicrobial activity of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid against methicillin-resistant Staphylococcus aureus

        Dasagrandhi, Chakradhar,Ellamar, Joel B.,Kim, Young Soon,Kim, Hak-Ryul Korean Society of Food Science and Technology 2016 Food Science and Biotechnology Vol.25 No.6

        We analyzed the antimicrobial potential of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid (7,10-EODA) against methicillin-resistant and -sensitive S. aureus (MRSA and MSSA). The anti-staphylococcal activity of 7,10-EODA and its consequences on cell physiology was determined by disc diffusion, broth microdilution, and flow cytometry. Anti-virulence activity of 7,10-EODA was evaluated by bioassays. 7,10-EODA was anti-staphylococcal with minimum inhibitory concentration (MIC) range of 125-250 mg/L. 7,10-EODA exhibited a dose response and inhibited MRSA 01ST001 by 90.5% and ATCC 29213 (MSSA) by 85.3% at 125 mg/L. MIC of 7,10-EODA permeabilized >95 % of MRSA 01ST001 cells to small molecules. Sublethal dose of 7,10-EODA was non-toxic but markedly reduced the hemolytic, coagulase, and autolytic activities of MRSA and MSSA at 15.6 mg/L. The results provide a lead for the utilization of natural furan fatty acids as novel anti-MRSA agents.

      • KCI등재

        Antimicrobial activity of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid against methicillin-resistant Staphylococcus aureus

        Chakradhar Dasagrandhi,Joel B. Ellamar,김영순,김학렬 한국식품과학회 2016 Food Science and Biotechnology Vol.25 No.6

        We analyzed the antimicrobial potential of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9- dienoic acid (7,10-EODA) against methicillin-resistant and -sensitive S. aureus (MRSA and MSSA). The anti-staphylococcal activity of 7,10-EODA and its consequences on cell physiology was determined by disc diffusion, broth microdilution, and flow cytometry. Anti-virulence activity of 7,10-EODA was evaluated by bioassays. 7,10-EODA was anti-staphylococcal with minimum inhibitory concentration (MIC) range of 125-250 mg/L. 7,10-EODA exhibited a dose response and inhibited MRSA 01ST001 by 90.5% and ATCC 29213 (MSSA) by 85.3% at 125 mg/L. MIC of 7,10-EODA permeabilized >95 % of MRSA 01ST001 cells to small molecules. Sublethal dose of 7,10-EODA was non-toxic but markedly reduced the hemolytic, coagulase, and autolytic activities of MRSA and MSSA at 15.6 mg/L. The results provide a lead for the utilization of natural furan fatty acids as novel anti-MRSA agents.

      • SCOPUSKCI등재

        미생물 생변환을 통한 필리핀 너트유로부터 기능성 지방산 7,10-dihydroxy-8(E)-octadecenoic acid 생산

        차크라다 다사그란디(Chakradhar Dasangrandhi),조엘 엘라마(Joel B. Ellamar),김영순(Young Soon Kim),김인환(In Hwan Kim),김학렬(Hak-Ryul Kim) 한국식품과학회 2017 한국식품과학회지 Vol.49 No.1

        본 연구를 통하여 P. aeruginosa PR3를 이용하여 DOD를 생산하기 위해 저가의 기질로서 필리핀 너트유가 효과적으로 사용될 수 있음을 확인하였으며 배지에 첨가되는 여러 영양인자들의 영향을 조사하여 DOD 생산성을 크게 향상시킬 가능성이 있음도 확인하였다. 따라서 DOD 생산에 이용되는 올레산을 식물성오일로부터 별도의 생산과정을 거쳐 생산하지 않고 식물성오일자체를 직접 기질로 사용함으로서 PR3 균주를 이용하여 고부가가치의 DOD를 효율적으로 생산할 수 있다는 것을 확인하였다. Biocatalytic modification of natural resources can be used to generate novel compounds with specific properties, such as higher viscosity and reactivity. The production of hydroxy fatty acids (HFAs), originally found in low quantities in plants, is a good example of the biocatalytic modification of natural vegetable oils. HFAs show high potential for application in a wide range of industrial products, including resins, waxes, nylons, plastics, lubricants, cosmetics, and additives in coatings and paintings. In a recent study, Pseudomonas aeruginosa strain PR3 was used to produce 7,10- dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid. This present study focused primarily on the utilization of three natural nut oils obtained from the Philippines -pili nut oil (PNO), palm oil (PO), and virgin coconut oil (VCO)- to produce DOD by P. aeruginosa strain PR3. Strain PR3 produced DOD from PNO and PO only, with PNO being the more efficient substrate. An optimization study to achieve the maximum DOD yield from PNO revealed the optimal incubation time and medium pH to be 48 h and 8.0, respectively. Among the carbon sources tested, fructose was the most efficiently used, with a maximum DOD production of 130 mg/50 mL culture. Urea was the optimal nitrogen source, with a maximum product yield of 165 mg/50 mL culture. The results from this study demonstrated that PNO could be used as an efficient substrate for DOD production by microbial bioconversion.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼