RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • EFFECT OF CODONOPSIS PILOSULA AND ASTRAGALUS ON THE TREATMENT OF CORONARY HEART DISEASE

        Liao, Jiazhen,Yang, Qinfel,Chen, Wenwei 경희대학교 동서의학연구소 1991 INTERNATIONAL SYMPOSIUM ON EAST-WEST MEDICINE Vol.1991 No.3

        The theory of traditional Chinese medicine (TCM) holds that the main pathogenesis of coronary heart disease (CHD) is qi-dcficiency and blood stasis. Therefore, the drugs for replenishing qi are often used for treatment of CHD. The present study is to explore the effects of Codonopsis pilosula and Astragalus (CP-A) on CHD by means of modern scientific methods. The results showed that the principal therapeutic actions of CP-A on CHD are as follows: 1. To reduce the frequency and severity of angina pectoris, decrease the depression of the ischemic ST-T and total ischemic burden during Holter Moniting. 2. To strengthen the left ventricular function, the mechanism responsible for inotropic effect of CP-A relating to inhibit the activity of PDE and increase the cAMP levels in the myocardial cells; 3. To inhibit the activity of PDE and increase the cAMP levels in the platelets resulting in the inhibition of platelet aggregation; 4. To increase the levels of ATP, glucogen, SDH and LDH in the myocardial cells and strengthen the energy metabolism in myocardiac cells. 5. To increase the volume of nutritious blood flow in the myocardium; 6. To prolong the action potential duration of myocardial cell and the activation time of sinus node; 7. Te reduce the plasma TXB2 level and increase or don't affect 6-keto-PGF1α level. 8. To strengthen the immunofunction and increase the level of OKT4 and OKT4/OKT8 ratio.

      • KCI등재

        Osteogenic and Angiogenic Potency of VEGF165-Transfected Canine Bone Marrow Mesenchymal Cells Combined with Coral Hydroxyapatite in Vitro

        Zhang Quanyin,Zhang Jie,Chen Lin,Fan Yunjian,Long Jiazhen,Liu Shuguang 한국조직공학과 재생의학회 2021 조직공학과 재생의학 Vol.18 No.5

        BACKGROUND: To explore the osteogenic and angiogenic potential of human vascular endothelial growth factor 165 (hVEGF165) gene-transfected canine bone marrow mesenchymal stem cells (BMSCs) combined with coral hydroxyapatite (CHA) scaffold. METHODS: We constructed a lentiviral vector and transfected canine BMSCs with the best multiplicity of infection. Osteogenesis was induced in the transfected groups (GFP-BMSCs group and hVEGF-BMSCs group) and non-transfected group (BMSCs group), followed by the evaluation of alkaline phosphatase (ALP) activity and alizarin red S staining. Cells from the three groups were co-cultured with CHA granules, respectively to obtain the tissue-engineered bone. MTT assay and fluorescence microscopy were employed to assess cell proliferation and adhesion. The expression of osteogenic and angiogenic related genes and proteins were evaluated at 7, 14, 21, and 28 days post osteoinduction in cell culture alone and cell co-culture with CHA, respectively using RT-PCR and ELISA. RESULTS: The hVEGF165 gene was transfected into BMSCs successfully. Higher ALP activity and more calcified nodules were found in the hVEGF-BMSCs group than in the control groups (p < 0.001). Cells attached and proliferated in CHA particles. Both cells cultured alone and cells co-culture with CHA expressed more osteogenic and angiogenic related genes and proteins in the hVEGF-BMSCs group compared to the GFP-BMSCs and BMSCs groups (p < 0.05). CONCLUSION: High expression of hVEGF165 in BMSCs potentially promote the osteogenic potential of BMSCs, and synergically drive the expression of other osteogenic and angiogenic factors. hVEGF-BMSCs co-cultured with CHA expressed more osteogenic and angiogenic related factors, creating a favorable microenvironment for osteogenesis and angiogenesis. Also, the findings have allowed for the construction of a CHA-hVEGF-BMSCs tissue-engineered bone. BACKGROUND: To explore the osteogenic and angiogenic potential of human vascular endothelial growth factor 165 (hVEGF165) gene-transfected canine bone marrow mesenchymal stem cells (BMSCs) combined with coral hydroxyapatite (CHA) scaffold. METHODS: We constructed a lentiviral vector and transfected canine BMSCs with the best multiplicity of infection. Osteogenesis was induced in the transfected groups (GFP-BMSCs group and hVEGF-BMSCs group) and non-transfected group (BMSCs group), followed by the evaluation of alkaline phosphatase (ALP) activity and alizarin red S staining. Cells from the three groups were co-cultured with CHA granules, respectively to obtain the tissue-engineered bone. MTT assay and fluorescence microscopy were employed to assess cell proliferation and adhesion. The expression of osteogenic and angiogenic related genes and proteins were evaluated at 7, 14, 21, and 28 days post osteoinduction in cell culture alone and cell co-culture with CHA, respectively using RT-PCR and ELISA. RESULTS: The hVEGF165 gene was transfected into BMSCs successfully. Higher ALP activity and more calcified nodules were found in the hVEGF-BMSCs group than in the control groups (p < 0.001). Cells attached and proliferated in CHA particles. Both cells cultured alone and cells co-culture with CHA expressed more osteogenic and angiogenic related genes and proteins in the hVEGF-BMSCs group compared to the GFP-BMSCs and BMSCs groups (p < 0.05). CONCLUSION: High expression of hVEGF165 in BMSCs potentially promote the osteogenic potential of BMSCs, and synergically drive the expression of other osteogenic and angiogenic factors. hVEGF-BMSCs co-cultured with CHA expressed more osteogenic and angiogenic related factors, creating a favorable microenvironment for osteogenesis and angiogenesis. Also, the findings have allowed for the construction of a CHA-hVEGF-BMSCs tissue-engineered bone.

      • KCI등재

        Contrast-enhanced ultrasonography-based renal blood perfusion in brain-dead donors predicts early graft function

        Weiming He,Yuguang Xu,Chaoyang Gong,Xiaozhen Liu,Yuqiang Wu,Xi Xie,Jiazhen Chen,Yi Yu,Zhiyong Guo,Qiang Sun 대한초음파의학회 2023 ULTRASONOGRAPHY Vol.42 No.4

        Purpose: The aim of this study was to quantify renal microcirculatory perfusion in braindead donors using contrast-enhanced ultrasonography (CEUS), and to establish an accurate, noninvasive, and convenient index for predicting delayed graft function (DGF) post-transplantation. Methods: In total, 90 brain-dead donor kidneys (training group, n=60; validation group, n=30) examined between August 2020 and November 2022 were recruited in this prospective study. CEUS was performed on the kidneys of brain-dead donors 24 hours before organ procurement and time-intensity curves were constructed. The main measures were arrival time, time to peak, and peak intensity of the kidney segmental arteries, cortex, and medulla. Recipients were divided into DGF and non-DGF groups according to early post-transplant graft function. The area under the receiver operating characteristic curve (AUC) was used to assess diagnostic performance. Results: The arrival time of the kidney segmental artery and cortex and the time interval between the time to peak of the segmental artery and cortex were identified as independent factors associated with DGF by multivariate stepwise regression analysis. A new index for the joint prediction model of three variables, the contrast-enhanced ultrasonography/Kidney Donor Profile index (CEUS-KDPI), was developed. CEUS-KDPI showed high accuracy for predicting DGF (training group: AUC, 0.91; sensitivity, 90.5%; specificity, 92.3%; validation group: AUC, 0.84; sensitivity, 75.0%; specificity, 92.3%). Conclusion: CEUS-KDPI accurately predicted DGF after kidney transplantation. CEUS may be a potential noninvasive tool for bedside examinations before organ procurement and may be used to predict early renal function after kidney transplants kidneys from donors after brain death.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼