RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression

        Hongjun Liang,Yanju Jiang,Yiyan Lu,Jiyue Hu 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.37 No.4

        Twenty-two corrosion-damaged columns were simulated through accelerated steel corrosion tests. Eight specimens were directly tested to failure under axial load, and the remaining specimens were tested after concrete-filled steel tube (CFST) strengthening. This study aimed to investigate the damage of RC columns after corrosion and their restoration and enhancement after strengthening. The research parameters included different corrosion degrees of RC columns, diameter-to-thickness ratio of steel tube and the strengthening concrete strength. Experimental results showed that CFST strengthening method could change the failure mode of corrosion-damaged RC columns from brittleness to ductility. In addition to the bearing capacity provided by the strengthening materials, it can also provide an extra 26.7% amplification because of the effective confinement provided by steel tubes. The influence of corrosion on reinforcement and concrete was quantitatively analysed and considered in the design formula. The proposed formula accurately predicted the bearing capacity of the strengthened columns with a maximum error of only 7.68%.

      • KCI등재

        High-efficiency removal of phenol and coking wastewater via photocatalysis-Fenton synergy over a Fe-g-C3N4 graphene hydrogel 3D structure

        Jinshan Hu,Pengfei Zhang,Jifang Cui,Weijia An,Li Liu,Yinghua Liang,Qingbin Yang,Hongjun Yang,Wenquan Cui 한국공업화학회 2020 Journal of Industrial and Engineering Chemistry Vol.84 No.-

        To achieve rapid separation of electron-hole pairs and improve photocatalytic degradation activity, theFe-g-C3N4 reduced graphene hydrogel (rGH/Fe-g-C3N4) with a 3D network structure was fabricated viathe hydrothermal method. Using visible light irradiation, H2O2 was added to form a photocatalysis-Fenton synergy system. The results showed that the synergistic degradation rate constant of 10% rGH/Feg-C3N4 was 52% higher than that of the multiphase Fenton reaction and 1.5 times higher than that of theFe-g-C3N4. In the seventh cycle, the catalytic efficiency was still as high as 86.9%. Based on the optimizedconditions from phenol degradation, the system was further applied to coking wastewater treatment,and the degradation efficiency of TOC and COD in 60 min reached 66.3% and 68.1%, respectively. Such highand stable degradation performance was ascribed to the synergy effect of photocatalysis and Fenton. Because of the photogenerated electrons not only can promote the Fe3+/Fe2+ cycle, accelerate thedecomposition of H2O2, but also can quickly transfer to graphene and directly decompose H2O2 to formOH. Thus, a large amount ofOH were generated through the two different channels, which greatlyimprove the degradation efficiency. Furthermore, rGH/Fe-g-C3N4 can be regenerated usingfilters withoutthe need for additional complicated processing. This work provides an effective strategy for the deeptreatment of industrial wastewater.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼