RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        The effect of mass eccentricity on the torsional response of building structures

        Georgoussis, George K.,Mamou, Anna Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.67 No.6

        The effect of earthquake induced torsion, due to mass eccentricities, is investigated with the objective of providing practical design guidelines for minimizing the torsional response of building structures. Current code provisions recommend performing three dimensional static or dynamic analyses, which involve shifting the centers of the floor masses from their nominal positions to what is called an accidental eccentricity. This procedure however may significantly increase the design cost of multistory buildings, due to the numerous possible spatial combinations of mass eccentricities and it is doubtful whether such a cost would be justifiable. This paper addresses this issue on a theoretical basis and investigates the torsional response of asymmetric multistory buildings in relation to their behavior when all floor masses lie on the same vertical line. This approach provides an insight on the overall seismic response of buildings and reveals how the torsional response of a structure is influenced by an arbitrary spatial combination of mass eccentricities. It also provides practical guidelines of how a structural configuration may be designed to sustain minor torsion, which is the main objective of any practicing engineer. A parametric study is presented on 9-story common building types having a mixed-type lateral load resisting system (frames, walls, coupled wall bents) and representative heightwise variations of accidental eccentricities.

      • SCIESCOPUS

        Yield displacement profiles of asymmetric structures for optimum torsional response

        Georgoussis, George K. Techno-Press 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.45 No.2

        Given the yield shear of a single-story inelastic structure with simple eccentricity, the problem of strength distribution among the resisting elements is investigated, with respect to minimize its torsional response during a ground motion. Making the hypothesis that the peak accelerations, of both modes of vibration, are determined from the inelastic acceleration spectrum, and assuming further that a peak response quantity is obtained by an appropriate combination rule (square root of sum of squares-SRSS or complete quadratic combination-CQC), the first aim of this study is to present an interaction relationship between the yield shear and the maximum torque that may be developed in such systems. It is shown that this torque may be developed, with equal probability, in both directions (clockwise and anticlockwise), but as it is not concurrent with the yield shear, a rational design should be based on a combination of the yield shear with a fraction of the peak torque. The second aim is to examine the response of such model structures under characteristic ground motions. These models provide a rather small peak rotation and code provisions that are based on such principles (NBCC-1995, UBC-1994, EAK-2000, NZS-1992) are superiors to EC8 (1993) and to systems with a stiffness proportional strength distribution.

      • SCIESCOPUSKCI등재

        Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

        Georgoussis, George K. Korea Concrete Institute 2017 International Journal of Concrete Structures and M Vol.11 No.1

        Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent single-degree-of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author's recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

      • KCI등재

        Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

        George K. Georgoussis 한국콘크리트학회 2017 International Journal of Concrete Structures and M Vol.11 No.1

        Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent singledegree- of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author’s recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

      • KCI등재

        Inelastic Rotational Response of Single Story Lateral Load Resisting Structures

        George K. Georgoussis 대한토목학회 2015 KSCE JOURNAL OF CIVIL ENGINEERING Vol.19 No.5

        The rotational response of inelastic asymmetric systems is the objective in this paper. As building structures of low or medium height are usually designed by a pseudo-static approach using a base shear much lower than that predicted from an elastic spectrum, the question which arises is what element strength assignment provides the minimum rotational response in the case of a strong ground motion. Several single story structural models are examined subject to six different ground motions and it is demonstrated that any strength distribution which produces low values of strength eccentricity and strength unbalance results in a low or moderate torsional behavior. A convenient method to achieve such reduced parameters is to apply a static analysis assuming that the design shear is passing through the center of mass, neglecting the existence of the orthogonal elements into the torsional stiffness of the system.

      • KCI등재

        Yield displacement profiles of asymmetric structures for optimum torsional response

        George K. Georgoussis 국제구조공학회 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.45 No.2

        Given the yield shear of a single-story inelastic structure with simple eccentricity, the problem of strength distribution among the resisting elements is investigated, with respect to minimize its torsional response during a ground motion. Making the hypothesis that the peak accelerations, of both modes of vibration, are determined from the inelastic acceleration spectrum, and assuming further that a peak response quantity is obtained by an appropriate combination rule (square root of sum of squares-SRSS or complete quadratic combination-CQC), the first aim of this study is to present an interaction relationship between the yield shear and the maximum torque that may be developed in such systems. It is shown that this torque may be developed, with equal probability, in both directions (clockwise and anticlockwise), but as it is not concurrent with the yield shear, a rational design should be based on a combination of the yield shear with a fraction of the peak torque. The second aim is to examine the response of such model structures under characteristic ground motions. These models provide a rather small peak rotation and code provisions that are based on such principles (NBCC-1995, UBC-1994, EAK-2000, NZS-1992) are superiors to EC8 (1993) and to systems with a stiffness proportional strength distribution.

      • KCI등재

        The effect of mass eccentricity on the torsional response of building structures

        George K. Georgoussis,Anna Mamou 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.67 No.6

        The effect of earthquake induced torsion, due to mass eccentricities, is investigated with the objective of providing practical design guidelines for minimizing the torsional response of building structures. Current code provisions recommend performing three dimensional static or dynamic analyses, which involve shifting the centers of the floor masses from their nominal positions to what is called an accidental eccentricity. This procedure however may significantly increase the design cost of multistory buildings, due to the numerous possible spatial combinations of mass eccentricities and it is doubtful whether such a cost would be justifiable. This paper addresses this issue on a theoretical basis and investigates the torsional response of asymmetric multistory buildings in relation to their behavior when all floor masses lie on the same vertical line. This approach provides an insight on the overall seismic response of buildings and reveals how the torsional response of a structure is influenced by an arbitrary spatial combination of mass eccentricities. It also provides practical guidelines of how a structural configuration may be designed to sustain minor torsion, which is the main objective of any practicing engineer. A parametric study is presented on 9-story common building types having a mixed-type lateral load resisting system (frames, walls, coupled wall bents) and representative heightwise variations of accidental eccentricities.

      • KCI등재

        The effect of accidental eccentricities on the inelastic torsional response of buildings

        George K. Georgoussis,Anna Mamou 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.75 No.2

        This paper investigates the influence of spatial varations of accidental mass eccentricities on the torsional response of inelastic multistorey reinforced concrete buildings. It complements recent studies on the elastic response of structural buildings and extends the investigation into the inelastic range, with the aim of providing guidelines for minimising the torsional response of structural buildings. Four spatial mass eccentricity configurations of common nine story buildings, along with their reversed mass eccentricities subjected to the Erzincan-1992 and Kobe-1995 ground motions were investigated, and the results are discussed in the context of the structural response of the no eccentricity models. It is demonstrated that when the initial linear response is practically translational, it is maintained into the inelastic phase of deformation as long as the strength assignment of the lateral resisting bents is based on a planar static analysis where the applied lateral loads simulate the first mode of vibration of the uncoupled structure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼