RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Evaluation of the Clinical Performance by Using the Effective DQE for a Prototype Digital Breast Tomosynthesis System

        최재구,김예슬,박혜숙,최영욱,함태희,김희중 한국물리학회 2012 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.60 No.5

        Early experience with the application of tomosynthesis to breast imaging has shown the potential of digital breast tomosynthesis (DBT), which can improve the specificity of mammography with improved marginal visibility of the lesion and early breast cancer detection, especially for women with dense breasts. The purpose of this study is to characterize the physical properties of the DBT system and to optimize the exposure conditions by using the modulation transfer function (MTF), the noise power spectrum (NPS), the scatter fraction, the transmission fraction and the effective detective quantum efficiency (eDQE) for different breast thicknesses. The first-generation KERI prototype digital tomosynthesis system for breast imaging using a CMOS flat panel detector was used in this study. The spatial frequency depend on metrics depend on both the inherent properties of the detector and the imaging geometry including breast thickness. For a thicker breast, the eDQE decreases as the scatter fraction increases at a fixed tube voltage. Moreover, the MTF shows no significant difference with changing tube voltage while the eDQE at 27 kVp is slightly degraded. Consequently, the above critical properties of the DBT system for different exposure conditions and breast thicknesses should be fully considered before building the system and using it application in clinical applications.

      • KCI등재

        Characterization of Prototype Full-field Breast Tomosynthesis by Using a CMOS Array Coupled with a Columnar CsI(Tl) Scintillator

        최재구,박혜숙,김예슬,최영욱,함태희,김희중 한국물리학회 2012 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.60 No.3

        We have developed a prototype full-field digital breast tomosynthesis (DBT) system by using a complementary-metal-oxide semiconductive (CMOS) array coupled with a columnar CsI(Tl) scintillator. The imaging system consists of a matrix with an active detector area of 3072 × 3888 pixels and a pixel pitch of 74.8 μm. For tomosynthesis imaging, the X-ray tube is automatically rotated in 3 increments in the shoot mode to acquire projection images at 15 different angles over a ±21angular range in less than 10 s. The digital detector is stationary during image acquisition. In this research, we also carried out evaluation studies to characterize the performance of the system in different operational modes designed for the DBT system, e.g., binning mode and the range of view angles, in terms of the modulation transfer function (MTF), the normalized noise power spectra (NNPS), and the detective quantum efficiency (DQE): The MTF value measured at the Nyquist frequency was 18.49%, the NNPS value at zero frequency was about 1.93 × 10−5 (mm2), and the maximum value of DQE was about 47.09% for the full resolution. For the pixel binning mode, the MTF decreased more than it did for the full resolution mode due to the increased effective pixel size. However, the full resolution mode was more sensitive to noise than the pixel binning mode. For the scan angle of the DBT system, oblique incidence of X-rays on a detector caused blurring that reduced resolution. These results seem to be promising for the use of the DBT system in potential clinical applications and will provide important information when comparisons with other DBT systems are made. We have developed a prototype full-field digital breast tomosynthesis (DBT) system by using a complementary-metal-oxide semiconductive (CMOS) array coupled with a columnar CsI(Tl) scintillator. The imaging system consists of a matrix with an active detector area of 3072 × 3888 pixels and a pixel pitch of 74.8 μm. For tomosynthesis imaging, the X-ray tube is automatically rotated in 3 increments in the shoot mode to acquire projection images at 15 different angles over a ±21angular range in less than 10 s. The digital detector is stationary during image acquisition. In this research, we also carried out evaluation studies to characterize the performance of the system in different operational modes designed for the DBT system, e.g., binning mode and the range of view angles, in terms of the modulation transfer function (MTF), the normalized noise power spectra (NNPS), and the detective quantum efficiency (DQE): The MTF value measured at the Nyquist frequency was 18.49%, the NNPS value at zero frequency was about 1.93 × 10−5 (mm2), and the maximum value of DQE was about 47.09% for the full resolution. For the pixel binning mode, the MTF decreased more than it did for the full resolution mode due to the increased effective pixel size. However, the full resolution mode was more sensitive to noise than the pixel binning mode. For the scan angle of the DBT system, oblique incidence of X-rays on a detector caused blurring that reduced resolution. These results seem to be promising for the use of the DBT system in potential clinical applications and will provide important information when comparisons with other DBT systems are made.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼