RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목

      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
          • 원문제공처
          • 등재정보
          • 학술지명
          • 주제분류
          • 발행연도
          • 작성언어
          • 저자

        오늘 본 자료

        • 오늘 본 자료가 없습니다.
        더보기
        • 무료
        • 기관 내 무료
        • 유료
        • ISO 표준 기반 산업설비 진단 사례 연구

          최재원(Jaewon Choi),김선화(Seonhwa Kim),임강민(Gangmin Lim),이동기(Donggi Lee) 대한기계학회 2019 대한기계학회 춘추학술대회 Vol.2019 No.11

          In recent years, as the power demand of thermal power plants increases, the amount of fuel used increases, resulting in an increase in coal supply, which increases the operational burden on major components of the fuel system and increases the frequency of failures. Vibration analysis is one of the representative methods of nondestructive testing used to diagnose the failure of rotating machinery. This study is a case study related to conveyor system equipment diagnosis of thermal power plant. Especially, it is a case of diagnosing failure of gearbox, bearing, etc. of rotating equipment based on ISO standard. The vibration of the Conveyor Drive Motor was measured using ISO 20816. The review confirmed that the application of Class IV was necessary due to the flexible foundation structure. In addition, it was confirmed that the rotational speed component (29.9 Hz) was dominant in the case of the motor, and the rotational speed component (29.9 Hz) was also dominant in the reducer. Vibration caused by the gear defect frequency component has less energy transfer effect and the looseness phenomenon was observed. As a recommendation, it was found that the field balancing needs to be carried out on the motor side, and the stiffness reinforcement is necessary to remove the effect of looseness.

        • 유도전동기에 발생되는 고장신호 검출 해석모델에 관한 연구

          김선화(Seonhwa Kim),노영진(Youngjin Roh),임강민(Gangmin Lim),김현철(Hyeonchul Kim) 대한기계학회 2019 대한기계학회 춘추학술대회 Vol.2019 No.11

          This paper presents the calculation of unbalanced magnetic pull (UMP) due to the geometrical problem in induction motor and evaluation of the stability of the motor system. Usually, the excessive noise and vibration occurred in the induction motor by means of geometrical problem. The existence of abnormal assembling in the rotor will produce airgap permeance wave which is a function of axial and circumferential coordinate. In this paper, the UMP is calculated using permeance and magnetomotive force (MMF) and it is not only the case of parallel eccentricity but also static and dynamic misalignment. Based on the percentage of misalignment and eccentricity, the result shows that the UMP and magnetic pressure are increased according to the increasing of misalignment and eccentricity. The UMP is occurred not only in 2fL frequency component but also the others.

        • 발전설비용 회전기계의 소급적 신뢰도중심정비 사례 연구

          김희수(Heesoo Kim),노영진(Youngjin Roh),손정욱(Jungwook Son),임강민(Gangmin Lim),김선화(Seonhwa Kim) 대한기계학회 2021 대한기계학회 논문집. Transactions of the KSME. C, 산업기술과 혁신 Vol.9 No.1

          본 논문에서는 소급적 신뢰도중심정비의 방법론을 회전기기의 정비 이력 데이터를 통하여 최적의 정비 주기를 도출한 사례를 소개하였다. 소급적 신뢰도중심정비는 대상 설비의 정비 현황을 분석하고, 설비의 신뢰도를 향상시키기 위하여 고장 라이브러리의 FMEA 결과를 기반으로 누락된 정비를 차기 정비전략에 적용하는 분석 방법이다. 본 연구에서 사례 연구로 활용한 데이터의 대상 설비는 펌프, 팬, 모터이며 사용된 정비 이력은 계획예방정비 정보이다. 사례 연구를 통하여 대상 설비에 대한 MTBF, MTTR, MTTI 의 핵심 지표가 도출되었으며, 이 지표는 정비 전략의 정비 주기를 결정하는 의사결정 알고리즘 변수로 활용되었다. 발전설비의 보수적인 예방정비로 인하여 고장 데이터의 확보가 어려우므로 본 연구에서는 선택적 의사 결정 알고리즘 적용이라는 개념을 도입하여 데이터를 분석하였다. 의사결정 알고리즘은 가용도 기준, 정비 시간 기준, 총 정비 비용 기준 알고리즘으로 구성되어 있으며, 대상 설비의 정비 이력에 따라 최적의 알고리즘을 적용하여 데이터 분석하였다. 또한 각각의 알고리즘은 Weibull Analysis 를 통한 주요 변수를 산출한 후 최적의 정비 주기 또는 검사 주기를 도출하였다. In this paper, we introduced a case of deriving an optimal maintenance cycle through retrospective reliability-based maintenance methodology through maintenance history data of rotating equipment. Hybrid reliability centered maintenance is an analysis method that analyzes the maintenance status of the target equipment and applies the missing maintenance to the next maintenance strategy based on the FMEA results of the failure library to improve the reliability of the equipment. The target machinery of the data used as a case study in this study are pumps, fans and motors, and the maintenance history used is information on planned preventive maintenance. Through the case study, the key indicators of MTBF, MTTR, and MTTI for the target equipment were derived, and this indicator was used as a decision algorithm variable to determine the maintenance cycle of the maintenance strategy. Because it is difficult to secure fault data due to the conservative preventive maintenance of machinery in power generation, this study analyzed the data by introducing the concept of applying an optional decision algorithm. The decision-making algorithm is composed of 3 algorithms (the availability, maintenance time and total maintenance cost). Data is analyzed by applying the optimal algorithm according to the maintenance history of the target machinery. In addition, each algorithm calculated the main variables through Weibull Analysis and then derived the optimal maintenance or inspection cycle.

        • KCI등재

          설비진단을 위한 초음파 신호의 특징분석 적용

          박동희(Donghee Park),안병현(Byunghyun Ahn),김효중(Hyojung Kim),하정민(Jeongmin Ha),임강민(Gangmin Lim),최병근(Byeongkeun Choi) 한국소음진동공학회 2017 한국소음진동공학회 논문집 Vol.27 No.5

          Ultrasound signal is widely used to detect fault by heterodyned signal. Typically an expert will scan around the object with the scanning module while listening through headphones and observing a display panel. But this diagnosis procedure is required by specialized expert and hardly detect early defect. In this paper, Feature selection based on GA (genetic algorithms) is selected from the features of ultrasound signal on frequency domain and time domain. Then, by using the Support Vector Machine one of the machine learning, the performance of classification is evaluated by extracted features and selected features. The results of classification is compared with feature extraction based on PCA (principal component analysis). Therefore, the feature selected for each defect can be used as a reference by feature analysis for ultrasound.

        맨 위로 스크롤 이동