RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 풍화 화연토와 loess의 붕괴특성 비교

        도덕현 한국지반공학회 1986 대한토질공학회지 Vol.2 No.1

        The structure of the collapsible soils, such as decomposed granite soil and loess, were examined by the odeometer test, SEM & XES analysis and static & cyclic triaxial test, and hove this structure have influences upon the collapsible behaviour under static and cyclic load was investigated. The study results obtained are as follows; 1. The macropores space of decomposed granite soil (rd=1.50g/cm3) and loess (rd=1.43g/cm3) used in this test were well developed, and showed the behaviour of collapsible soil. 2. Collapsible soil has high resistance on the strain under natural moisture content, however, the resistance on the strain was sharply decreased by the absorption and increasing load since its special structure was destructed. 3. Under the static load, the strain of collapsible soil was high by the viscous flow of the cyclic bonds with time lapse, but Infer the cyclic load, the strain of collapsible soil was low since the tinge needed to destruct the bonding force of clay was not enough. 4. The understanding about the cyclic behaviour of collapsible soil may be helpful to predict the elastic & residual strain of the foundations by the earthquake together with the damage by the additional failure.

      • KCI우수등재

        첨가제에 의한 Soil-Cement의 성질 개량

        도덕현 한국농공학회 1979 한국농공학회논문집 Vol.21 No.1

        Six kinds of weathered granite soils whose degree of weathering and mineral compo- sitions are different, were tested in order to improve the soil-cement. by performing compression test, durability (freezing-thawing) test and mesurement of shrinkage are made. From result of the tests as mentioned above, the following conclusions are drawn. The unconfined compressive strength of seondary additives containing soil-cement mixtures and their resistance against freezeing-thawing are more increased and shrinkage is more decreased than soil-cement mixtures only in case opitimun quantity of additives are added to soil-cement mixtures, and according as types of soils.

      • KCI우수등재

        화강암질 풍화토의 파쇄성에 관한 연구

        도덕현,강우묵 한국농공학회 1979 한국농공학회논문집 Vol.21 No.2

        The weathered granite soil involves problems in its stability in soil structures depending upon the reduction of soil strength due to the water absorption, crushability, and content of colored mineral and feldspar. As an attemt to solve the problems associated with soil stability, the crushability of weathered granite soil was investigated by conducting tests such as compaction test, CBR test, unconfined compression test, direct shear test, triaxial compression test, and permeability test on the five soil samples different in weathering and mineral compositions. The experimental results are summarized as follows: The ratio of increasing dry density in the weathered granite soil was high as the compaction energy was low, while it was low as the compaction energy was increased. The unconfined compressive strength. and CBR value were highest in the dry side rather than in the soil with the optimum moisture content, when the soil was compacted by adjusting water content. However, the unconfined compressive strength of smples, which were compacted and oven dried, were highest in the wet side rather than in soil with the optimum moisture content. As the soil becomes coarse grain, the ratio of specific surface area increased due to increased crushability, and the increasing ratio of the specific surface area decreased as the compaction energy was increased. The highest ratio of grain crushability was attained in the wet side rather than in the soil with the optimum moisture content. Such tendency was transforming to the dry side as the compaction energy was increased. The effect of water on the grain crushability of soil was high in the coarse grained soil. The specific surface area of WK soil sample, when compacted under the condition of air dried and under the optimum moisture content, was constant regardless of the compaction energy. When the weathered granite soil and river sand with the same grain size were compacted with low compaction energy, the weathered granite soil with crushability had higher dry density than river sand. However, when the compaction energy reached to certain point over limitation, the river sand had higher dry density than the weathered granite soil. The coefficient of permeability was lowest in the wet side rather than in the optimum moisture content, when the soil was compacted by adjusting soil water content. The reduction of permeability of soil due to the compaction was more apparent in the weathered granite soil than in the river sand. The highly significant correlation coefficient was obtained between the amount of particle breakage and dry density of the compacted soil.

      • KCI우수등재

        육상 및 항만지역상의 압밀특성치의 상관성

        도덕현,이성태,강우묵 한국농공학회 1983 한국농공학회논문집 Vol.25 No.4

        305 samples of alluvial deposit in inland and harbour districts were selected and consolidation charateristics of the alluvium were put in order statiscally. The correlations between them were as follows. 1. The relationships between LL(liguid limit) and Cc (compression index) were explained as Cc=0. 03(LL-21. 7) in case of inland district soil and as Cc=0. 019(LL-19) in case of harbour district soil. As compared with formular proposed by Skernpton, the gradient of this linear line was slight steep. 2. The relationships between PI(plastic index) and Cc were explained as Cc=0. 063 PI-0. 52 in case of inland district soil and Cc=0. 043 PI-0. 31 in case of harbour district soil. 3. As void ratio and natural moisture content were increased, Cc was increased, and as wet density was increased, Cc was decreased with a gentle curve. 4. As LL and P1 increased, mv(coefficient of volume compressibility) was increased but if LL and P1 was increased beyond a certain extend, mv has a tendency of constant value, that is, mv show a tendency to take constant value in the very soft clay. and mv in P=2. 5kg/cm$^2$ was about l${\times}$ l0-$^1$cm$^2$/kg in case of land district soil and 6x 10-$^1$crn$^2$/kg in case of harbour district soil lower than that in P=0. 25kg/crn2. 5. Cv(coefficient of consolidation) was a tendency to decrease with a gentle curve as LL was increased, and Cv in P=0. 25kg/crn2 was about 3x l0-$^1$crn$^2$/min larger than that in P=2. 5kg/crn$^2$. 6. Relationships between Py(pre-consolidation pressure) which is included over consolidation soil and ∑r1h(effective over-burden pressure) were explained as Py=l. 12 ∑r'h in case of land district soil and as Py=l. l5∑r'h in case of harbour district soil. 7. Some of the properties show good correlations between them, practical and effective applications of these correlations are expected in the planning and excution of soil investigation and also in the evaluation of the results.

      • KCI우수등재

        토목섬유를 이용한 보강토옹벽의 개발

        도덕현,유능환 한국농공학회 1986 한국농공학회논문집 Vol.28 No.2

        The model was developed by applying the principles of Bacot and Vidal to measure the behavior of deformation of the reinforced earth wall, and various tasts were performed by using the plastic fabric filter and the galvanized steel plate as a strip. The results obtained are as follows; 1. When the reinforced earth wall is deformed by the load, the strip is completely reinforced by the backfill materials and changed to the rigid block state, under the state of failure which permits sliding only, the next theoretical equation is formed. (H/L) . tan$\theta$ [cosO-sinOtanO] =2sinO[tan($\theta$ +0) +tanO] 2.The degree of the mutual reinforcement of the backfill material and the strip depend on the physical characteristics of the each material especially the angle of shearing resistance of the backfill material is desirable over 20$^{\circ}$ and, if it is over 400, its function could be a maximum. 3.The distribution of the maximum tensile strain of the reinforcement is changing with the height of reinforced earth wall, and when the height from bottom of the reinforced earth wall is 1.85 to 3. 35m, the maximum tensile strain appears at 2m from the skin element. The maximum tensile strain is increased by the depth of the reinforced earth wall from surface, and increased with the lapse of time after construction. 4.The failure surface of the reinforced earth wall by the concrete skin was about 60$^{\circ}$and the failure behavior of the reinforced earth wall in which the fabric filter was buried was slow, and so the pore pressure could be decreased. 5.It is possible to construct the fabric retained earth wall by the plastic fabric filter only. And the reinforcing effect between the steel plate and the plastic fabric filter is not largely different. however, in the aspect of the economic durability, the plastic fabric filter is more advantageous. 6.The reinforcing action mainly depends on the width and the length of the reinforcing materials, if possible, the full width is advantageous to enlarge the contact area with backfill. but considering the economic aspect, it is neccessary to develop the method controlling the space of the strip.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼