RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        가 지지점을 이용한 프리스트레스된 강재 라멘식 보도육교의 개발

        공병승,황원섭,박영제,Kong, Byung Seung,Hwang, Won Sup,Park, Young Je 한국강구조학회 1998 韓國鋼構造學會 論文集 Vol.10 No.4

        This study presents overall process for designing and constructing a prestressed frame overpass using temporary piers. For the purpose of automating the design process, this study presents a computer program. According to the effective span(20m, 25m, 30m, 35m, 40m, 45m), this study performed parametric analysis and eventually presented appropriate cross section and compared this cross section with that of the existing simple steel overpass in girder height and quantify of the steel. $26{\sim}48%$ for gilder height and $25{\sim}34%$ for quantify of the steel are reduced as the result of study for span length $20{\sim}45m$. As long as the span length. the reduction rate was large. 본 연구는 가 지지점을 이용한 프리스트레스된 강재 라멘식 보도육교를 설계하고 시공하는 전반적인 과정을 제시하였다. 설계의 자동화를 위하여 전산 프로그램을 개발하였으며 지간별로 매개변수 연구를 수행하여 적절한 단면을 제시하였고 이를 기존의 강재 단순보형 보도육교와 형고 및 강재량 면에서 비교하였다. 지간장 $20{\sim}45m$에 대한 연구결과, 주형고의 경우에는 $26{\sim}48%$, 강재량의 경우에는 $25{\sim}34%$의 재료 절감 효과를 나타내었으며. 지간장이 클수록 절감 효과가 큰 것으로 분석되었다.

      • KCI등재

        기둥-보 연결 강구조물의 소성회전각에 의한 피로곡선 연구

        공병승,Kong, Byung Seung 한국강구조학회 1998 韓國鋼構造學會 論文集 Vol.10 No.2

        본 연구에서는 지진 등과 같이 소성변형의 범위가 큰 Low-Cycle-Fatigue 범주에서 구조물의 응력변동을 중심으로 사용되는 기존의 피로곡선인 S-N선도 보다 실질적으로 간단하게 측정하여 분석할 수 있는 소성회전각에 의한 피로곡선을 제시하였다. 이는 소성힌지가 생성되는 곳의 소성변형율과 구조물의 소성회전각이 서로 정비례를 이루는 상관관계임을 입증하여, 실험을 통하여 밝혀진 소성변형율의 피로곡선의 기울기와 소성회전각의 기울기가 서로 같은 값을 가짐을 보여 주었다. 이론은 Manson과 Coffin의 변형을 피로곡선을 도입하였고, 실험은 ECCS 주관하에 실시하였으며, 수치해석을 통하여 소성힌지 부위의 위치와 정확한 소성변형율을 산정할 수 있었다. This study presents a fatigue line with a plastic rotational angle to a great extent of plastic strain of Low-Cycle-Fatigue period, such as earthquake, etc. This fatigue line with a plastic rotational angle is measured and analysed more simply in practice rather than Woehler's fatigue line which is developed in stress variation of the structure. It shows that the slope of fatigue line with a plastic rotational angle is equal to that with plastic strain through the experiments by proving the correlation that the plastic strain ratio is directly proportional to the plastic rotational angle in plastic hinge. The theory is induced by Manson and Coffin strain fatigue line, and the experiments are tested by ECCS. The location of the plastic hinge is achieved and accurate plastic strain ratio is calculated through FEM.

      • KCI등재

        해상 장대교량의 시공중 계측 및 유지관리 시스템 구축을 위한 분석 연구

        공병승(BYUNG-SEUNG KONG) 한국해양공학회 2008 韓國海洋工學會誌 Vol.22 No.5

        This cases of using new methods of big blocks are largely increasing on Recent large-scale bridge structures. So the accurate data of responses of bridges following environmental causes are required to be quickly recorded in order to predict. For this reason described above, the research on measuring system should be conducted for more knowledge of the details on application and stability of new methods. In this study, the new health monitoring system that can monitor the real behavior and damages of the bridge during all processes of construction is presented by analyzing cases of domestic and overseas bridge health monitoring system, and applied methods of following bridges.

      • KCI등재

        벌크헤드 플레이트가 부착된 강바닥판교의 피로상세 개선 연구

        공병승(BYUNG-SEUNG KONG) 한국해양공학회 2004 韓國海洋工學會誌 Vol.18 No.1

        An orthotropic steel deck system is widely adapted form for a Iong-span bridge. It has many advantages, such as the big reduction of dead weight, the simplicity for erection, and the reduction of the construction period. However, an orthotropic steel deck system requires a lot of welding work, which may result in defects and deformation of connections. Therefore, the research for the general behavior and fatigue strength of the several details in orthotropic steel deck bridge is necessary. The fatigue failure with distortion results from secondary stress by out-of-plane deformation; these kinds of cracks are very difficult to measure, and can not be precisely calculated through finite element analysis. This stress concentration phenomenon generates the fatigue failure around the lower scallop of the transverse rib. This paper presents improved details of the intersection between the longitudinal rib and the transverse rib of an orthotropic steel deck bridge by the third dimensional full size test, and the finite element method, which can minimize local stress through parametric study.

      • 보강된 세로리브에 의한 강바닥판교의 응력변화 연구

        공병승(Kong Byung-Seung),김민호(Kim Min-Ho) 한국철도학회 2007 한국철도학회 학술발표대회논문집 Vol.- No.-

        The Steel deck a structural analysis in head plate form change the objective bridge which it sells it accomplished a detailed structural analysis from the research which it sees and Bulk-head plate it accomplished. The length rib where the fatigue crack which is considerable generally occurs, width rib connection department and the length rib side, the width rib side it compares principal stress in the object and it does to sleep. It applied the grudge element model which it describes consequently after words and a load and a boundary condition and it executed it compared a static test and principal stress. It grasped the stress conduct of the The Steel deck petal which it follows in hand weaving rib affix location and the affix location to sleep in order to analyze a same location Bulk-head the head and comparison considered. From the detailed section which is reinforced with the stress investigation result hand weaving rib of the location which is weak in structural analysis result fatigue crack of form star reinforcement details basic form and Bulk-head the form which is reinforced with the head plate compared to principal stress investigation hour it is judged at the section which separates most.

      • 철도용 사장교의 케이블 정착구조에 관한 형식별 FEM해석 연구

        공병승(Kong Byung Seung),박지호(Park Ji Ho) 한국철도학회 2006 한국철도학회 학술발표대회논문집 Vol.- No.-

        Since the 20th century, the business of railway was invaded by the invention of airplanes and vehicles in the field of the transportation of passenger and commercial products, however, in the 21st century, the fervent development of a high-speed railway made possible the huge capacity of transporting passengers and commercial freight, so the railway industry is facing a new era of railway revolution. The 200 years old railway tradition includes the history of railway bridges built in areas of river, valley and metropolitan region and in that, the number of constructions of railway bridges that is composed of cable-stayed bridges is increasing as one of the most optimal bridges considering the quality of materials and the span of continuous-welded long rail. Thanks to the minimized effects of the fixed load on the stiffening girder section by delivering the fixed load which is applied to the pylon with the composition of elastic supporting-points by using cables and the effective structural system that can throughly resist extra loads in addition to fixed load, the long-extended span of a bridge becomes possible. In this structural system, the load that is applied to the stiffening girder section forms a flow pattern and in the process of these load delivery, there will be a necessity to examine the concentration of stress occurred in the cable-anchor system of the cable.

      • KCI등재

        해상 사장교의 Pipe형 케이블 정착구에 관한 구조해석

        공병승(BYUNG-SEUNG KONG),홍남식(NAMSEEG HONG) 한국해양공학회 2005 韓國海洋工學會誌 Vol.19 No.5

        The cable connection zone of the cable-stayed bridge transfers deal-load, live-load, and second-load to the cables on the structural joint zone of the cables and the main girders are the most critical parts in which big cable tensile forces are generated by those loads. Therefore, it is necessary to thoroughly check the main girder, structurally to secure the required stability. Because of the heavy tensile force of cables linked in the connection zone of the cable-stayed bridge, locally concentrated stress, as well as the dispersion of stress, occurs in the structurally contacted point of cable and main girder thus, we need to make a thorough investigation through a detailed structural analysis. Directly delivering the tensile force to the connection zone of the cable, the consequently big effect in the tensile force fluctuation caused by the live-load will make it necessary to review the fatigue strength. As the connection zone of the cable is designed to resist the tensile force of the cable, which is applied to a connecting section as a concentrated force, thick plates are used. These plates are frequently made of welded structure, thus, the investigation of the welding workability is inevitable.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼