RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Decomposition on Nitrogen Dynamics in Soil Applied with Compost and Rye

        Byong-Gu Ko,Myung-Sook Kim,Seong-Jin Park,Sun-Gang Yun,Taek-Keun Oh,Chang Hoon Lee 한국토양비료학회 2015 한국토양비료학회지 Vol.48 No.6

        Soil organic matter (SOM) plays an important role in the continuous production and environmental conservation in arable soils. In particular, the decomposition of organic matter in soil might promote soil organic matter and fertility due to the mineralization of N. In this study, to evaluate the effect of organic matter amendment on the C mineralization and N dynamic, CO₂-C flux, extractable N and N₂O emission were determined using closed chamber for 4 weeks at 10, 15, 20°C of incubation temperature after the mixture of 2 Mg ha<SUP>-1</SUP> rice straw compost and rye in sandy loam and clay loam. Regardless of soil texture, decomposition rates of rice straw compost and rye at 10~20°C of incubation temperature ranged from 0.9 to 3.8% and 8.8 to 20.3%, respectively. Rye application in soil increased NH₄-N and NO₃-N content as well as the N₂O emission compared to the rice straw compost. After incubation for 4 weeks, total C content in two soils was higher in rice straw compost than in rye application. In conclusion, application of rice straw compost and rye to soil was able to improve the soil organic matter and fertility. However, organic matter including the recalcitrant compounds like rice straw compost would be effective on the management of soil organic matter and the reduction of greenhouse gases in soil.

      • KCI등재

        Effect of Decomposition on Nitrogen Dynamics in Soil Applied with Compost and Rye

        고병구,김명숙,박성진,윤순강,오택근,이창훈 한국토양비료학회 2015 한국토양비료학회지 Vol.48 No.6

        Soil organic matter (SOM) plays an important role in the continuous production and environmental conservation in arable soils. In particular, the decomposition of organic matter in soil might promote soil organic matter and fertility due to the mineralization of N. In this study, to evaluate the effect of organic matter amendment on the C mineralization and N dynamic, CO2-C flux, extractable N and N2O emission were determined using closed chamber for 4 weeks at 10, 15, 20°C of incubation temperature after the mixture of 2 Mg ha-1 rice straw compost and rye in sandy loam and clay loam. Regardless of soil texture, decomposition rates of rice straw compost and rye at 10~20°C of incubation temperature ranged from 0.9 to 3.8% and 8.8 to 20.3%, respectively. Rye application in soil increased NH4-N and NO3-N content as well as the N2O emission compared to the rice straw compost. After incubation for 4 weeks, total C content in two soils was higher in rice straw compost than in rye application. In conclusion, application of rice straw compost and rye to soil was able to improve the soil organic matter and fertility. However, organic matter including the recalcitrant compounds like rice straw compost would be effective on the management of soil organic matter and the reduction of greenhouse gases in soil.

      • KCI등재

        Effect of Decomposition on Nitrogen Dynamics in Soil Applied with Compost and Rye

        Ko, Byong-Gu,Kim, Myung-Sook,Park, Seong-Jin,Yun, Sun-Gang,Oh, Taek-Keun,Lee, Chang Hoon 한국토양비료학회 2015 한국토양비료학회지 Vol.48 No.6

        Soil organic matter (SOM) plays an important role in the continuous production and environmental conservation in arable soils. In particular, the decomposition of organic matter in soil might promote soil organic matter and fertility due to the mineralization of N. In this study, to evaluate the effect of organic matter amendment on the C mineralization and N dynamic, $CO_2-C$ flux, extractable N and $N_2O$ emission were determined using closed chamber for 4 weeks at 10, 15, $20^{\circ}C$ of incubation temperature after the mixture of $2Mgha^{-1}$ rice straw compost and rye in sandy loam and clay loam. Regardless of soil texture, decomposition rates of rice straw compost and rye at $10{\sim}20^{\circ}C$ of incubation temperature ranged from 0.9 to 3.8% and 8.8 to 20.3%, respectively. Rye application in soil increased $NH_4-N$ and $NO_3-N$ content as well as the $N_2O$ emission compared to the rice straw compost. After incubation for 4 weeks, total C content in two soils was higher in rice straw compost than in rye application. In conclusion, application of rice straw compost and rye to soil was able to improve the soil organic matter and fertility. However, organic matter including the recalcitrant compounds like rice straw compost would be effective on the management of soil organic matter and the reduction of greenhouse gases in soil.

      • KCI등재

        고추 재배 밭에서 채취한 토양의 유기물 함량과 질소 무기화 량의 관계

        이예진,이슬비,김양민,송요성,이덕배 한국환경농학회 2019 한국환경농학회지 Vol.38 No.3

        BACKGROUND: Estimation of soil nitrogen supply is essential to manage nitrogen fertilization in arable land. In Korea, nitrogen fertilization is recommended based on the soil organic matter content because it is difficult to assess nitrogen (N) mineralization of upland soils directly. In this study, the relationship between soil organic matter (SOM) content and N mineralization was investigated to explore the limitation of using SOM in predicting soil N mineralization. METHODS AND RESULTS: Soil samples from the 0 to 10 cm depth were collected from 18 individual pepper cultivated fields in Tae-an and Chung-yang provinces before fertilization. N mineralization in the soils was quantified using incubation for 70 days at 30℃. The mineralizable soil N (MSN) was positively correlated with SOM, and the relation equation between MSN and SOM was‘MSN(kg 10a-1) = 0.2933*SOM(g kg-1) + 0.0897 (r2=0.6224, p<0.001)’. However, the differences of N mineralization among the soils with the similar concentrations of soil organic matter were about 3 to 4.6 times, suggesting that the other soil factors such as total N concentration or EC should affect N mineralization. CONCLUSION: We concluded that SOM alone could not reflect the capacity of soil to supply N that is used for recommendation of N fertilization rate. Therefore, other soil properties should be considered to improve N fertilization management in arable land for sustainable agriculture.

      • KCI등재

        Nitrogen Mineralization of Cereal Straws and Vetch in Paddy Soil by Test Tube Analysis

        Cho, Young-Son,Lee, Byong-Zhin,Choe, Zhin-Ryong The Korean Society of Crop Science 1999 Korean journal of crop science Vol.44 No.2

        Mineralization of organic N is an important factor in determining the appropriate rate of organic matter application to paddy fields. A kinetic analysis was conducted for nitrogen mineralization of rice, barley, Chinese milk Ovetch (Astragalus sinicus L.; MV) and narrow leaf vetch straw in paddy soil. Nitrogen immobilization occurred rapidly and its rate increased in straw with high C/N ratio. The amount of nitrogen mineralization was rapid in the first year of rice-vetch cropping system. The rate constant (K) depended on the C/N ratio of organic matter. Mineralization of straw increased at high temperature. The amount of available N increment resulted in fast mineralization of straw, especially in rice and barley straw. Chinese milk vetch had the greatest mineralization rate at all temperatures and fertilization levels followed by narrow-leaf vetch. However, rice and barley straws with high C/N ratio immobilized the soil N at the initial incubation duration. Chinese milk vetch or narrow leaf vetch was not effectively mineralized in mixed treatments with rice or barley straw. The mineralization rate of organic matter was mostly affected by the C/N ratio of straw and temperature of incubation. Organic matter with low C/N ratio should be recommended to avoid the immobilization of soil N and the increasing mineralization rate of straw.

      • KCI등재

        Nitrogen Mineralization of Cereal Straws and Vetch in Paddy Soil by Test Tube Analysis

        Young-Son Cho,Byong-Zhin Lee,Zhin-Ryong Choe 韓國作物學會 1999 Korean journal of crop science Vol.44 No.2

        Mineralization of organic N is an important factor in determining the appropriate rate of organic matter application to paddy fields. A kinetic analysis was conducted for nitrogen mineralization of rice, barley, Chinese milk Ovetch (Astragalus sinicus L.; MV) and narrow leaf vetch straw in paddy soil. Nitrogen immobilization occurred rapidly and its rate increased in straw with high C/N ratio. The amount of nitrogen mineralization was rapid in the first year of rice-vetch cropping system. The rate constant (K) depended on the C/N ratio of organic matter. Mineralization of straw increased at high temperature. The amount of available N increment resulted in fast mineralization of straw, especially in rice and barley straw. Chinese milk vetch had the greatest mineralization rate at all temperatures and fertilization levels followed by narrow-leaf vetch. However, rice and barley straws with high C/N ratio immobilized the soil N at the initial incubation duration. Chinese milk vetch or narrow leaf vetch was not effectively mineralized in mixed treatments with rice or barley straw. The mineralization rate of organic matter was mostly affected by the C/N ratio of straw and temperature of incubation. Organic matter with low C/N ratio should be recommended to avoid the immobilization of soil N and the increasing mineralization rate of straw

      • KCI등재

        Influence of Drying Temperature and Duration on the Quantification of Particulate Organic Matter

        Lee, Jin-Ho,Doolittle, James J.,Lee, Do-Kyoung,Malo, Douglas D. The Korean Society of Environmental Agriculture 2006 한국환경농학회지 Vol.25 No.4

        Various drying conditions, temperatures (40 to $80^{\circ}C$) and durations (overnight to 72 hrs), for the particulate organic matter (POM) fraction after wet-sieving size fractionation have been applied for determination of POM contents in the weight loss-on-ignition method. In this study, we investigated the optimum drying condition for POM fraction in quantification of POM and/or mineral-associated organic matter (MOM; usually indirectly estimated). The influence of the drying conditions on quantifying POM was dependent upon soil properties, especially the amount of soil organic components. In relatively high organic soils (total carbon > 40 g/kg in this study), the POM values were significantly higher (overestimated) with drying at $55^{\circ}C$ than those values at $105^{\circ}C$, which were, for example, 173.2 and 137.3 mg/kg, respectively, in a soil studied. However, drying at $55^{\circ}C$ for longer than 48 hrs of periods produced consistent POM values even though the values were much higher than those at $105^{\circ}C$. Thus, indirect estimates of MOM (MOM = SOM-POM) also tended to be significantly impacted by the dry conditions. Therefore, we suggest POM fractions should be dried at $105^{\circ}C$ for 24 hrs as determining POM and MOM contents. If the POM traction is needed to be dried at a lower temperature (e.g. $55^{\circ}C$) with a specific reason, at least 48 hrs of drying period is necessary to obtain consistent POM values, and a moisture correction factor should be determined to adjust the values back to a $105^{\circ}C$ weight basis.

      • KCI등재

        Survival and Performance of Two Cellulose-Degrading Microbial Systems Inoculated into Wheat Straw-Amended Soil

        ( Pei Pei Li ),( Dong Dong Zhang ),( Xiao Juan Wang ),( Xiao Fen Wang ),( Zong Jun Cui1 ) 한국미생물 · 생명공학회 2012 Journal of microbiology and biotechnology Vol.22 No.1

        A cellulose-degrading composite microbial system containing a mixture of microbes was previously shown to demonstrate a high straw-degrading capacity. To estimate its potential utilization as an inoculant to accelerate straw biodegradation after returning straw to the field, two cellulose-degrading composite microbial systems named ADS3 and WSD5 were inoculated into wheat straw-amended soil in the laboratory. The microbial survival of the inoculant was confirmed by a denaturing gradient gel electrophoresis (DGGE) analysis, whereas the enhancement of straw degradation in soil was assessed by measuring the mineralization of the soil organic matter and the soil cellulase activity. The results indicated that most of the DGGE bands from ADS3 were detected after inoculation into straw-amended autoclaved soil, yet only certain bands from ADS3 and WSD5 were detected after inoculation into straw-amended non-autoclaved soil during five weeks of incubation; some bands were detected during the first two weeks after inoculation, and then disappeared in later stages. Organic matter mineralization was significantly higher in the soil inoculants ADS3 and WSD5 than in the uninoculated controls during the first week, yet the enhanced degradation did not persist during the subsequent incubation. Similar to the increase in soil organic matter, the cellulase activity also increased during the first week in the ADS3 and WSD5 treatments, yet decreased during the remainder of the incubation period. Thus, it was concluded that, although the survival and performance of the two inoculants did not persist in the soil, a significant enhancement of degradation was present during the early stage of incubation.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼