RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        백색광과 청색광 스캐너를 이용한 지대치 인상체 스캐닝의 반복재현성 비교

        전진훈,성환경,민병국,황재선,김지환,김웅철 대한치과기공학회 2015 대한치과기공학회지 Vol.37 No.4

        Purpose: The purpose of this study compared of reproducibility of prepared tooth impression scanning utilized with white and blue light scanners. Methods: To evaluate reproducibility with white and blue light scanners, the impression of premolar were rotated by 10°~20° and scanned. These data were compared with the first 3-D data (STL file), and the error sizes were measured (n=5). Independent t test was used to evaluation the reproducibility of impression of premolar with white versus blue light scanners through discrepancies of mean, RMS (α=0.05). Results: Discrepancies of mean with regard to reproducibility were 11.2㎛, 5.8㎛, respectively, with white and blue light scanners (p<0.047). And discrepancies of RMS with regard to reproducibility were 33.4㎛, 18.8㎛, respectively, with white and blue light scanners (p<0.045). Conclusion: Our results indicate a good reproducibility of prepared tooth impression digitized with blue light scanner more than that with white light scanner.

      • SCIESCOPUSKCI등재

        White light scanner-based repeatability of 3-dimensional digitizing of silicon rubber abutment teeth impressions

        Ji-Hwan Kim,Woong-Chul Kim,Hae-Young Kim,Kyung-Tak Lee,The Master’s course,Jin-Hun Jeon 대한치과보철학회 2013 The Journal of Advanced Prosthodontics Vol.5 No.4

        PURPOSE The aim of this study was to evaluate the repeatability of the digitizing of silicon rubber impressions of abutment teeth by using a white light scanner and compare differences in repeatability between different abutment teeth types. MATERIALS AND METHODS Silicon rubber impressions of a canine, premolar, and molar tooth were each digitized 8 times using a white light scanner, and 3D surface models were created using the point clouds. The size of any discrepancy between each model and the corresponding reference tooth were measured, and the distribution of these values was analyzed by an inspection software (PowerInspect 2012, Delcamplc., Birmingham, UK). Absolute values of discrepancies were analyzed by the Kruskal-Wallis test and multiple comparisons (α=.05). RESULTS The discrepancy between the impressions for the canine, premolar, and molar teeth were 6.3 µm (95% confidence interval [CI], 5.4-7.2), 6.4 µm (95% CI, 5.3-7.6), and 8.9 µm (95% CI, 8.2-9.5), respectively. The discrepancy of the molar tooth impression was significantly higher than that of other tooth types. The largest variation (as mean [SD]) in discrepancies was seen in the premolar tooth impression scans: 26.7 µm (95% CI, 19.7-33.8); followed by canine and molar teeth impressions, 16.3 µm (95% CI, 15.3-17.3), and 14.0 µm (95% CI, 12.3-15.7), respectively. CONCLUSION The repeatability of the digitizing abutment teeth's silicon rubber impressions by using a white light scanner was improved compared to that with a laser scanner, showing only a low mean discrepancy between 6.3 µm and 8.9 µm, which was in an clinically acceptable range. Premolar impression with a long and narrow shape showed a significantly larger discrepancy than canine and molar impressions. Further work is needed to increase the digitizing performance of the white light scanner for deep and slender impressions.

      • SCIESCOPUSKCI등재

        White light scanner-based repeatability of 3-dimensional digitizing of silicon rubber abutment teeth impressions

        Jeon, Jin-Hun,Lee, Kyung-Tak,Kim, Hae-Young,Kim, Ji-Hwan,Kim, Woong-Chul The Korean Academy of Prosthodonitics 2013 The Journal of Advanced Prosthodontics Vol.5 No.4

        PURPOSE. The aim of this study was to evaluate the repeatability of the digitizing of silicon rubber impressions of abutment teeth by using a white light scanner and compare differences in repeatability between different abutment teeth types. MATERIALS AND METHODS. Silicon rubber impressions of a canine, premolar, and molar tooth were each digitized 8 times using a white light scanner, and 3D surface models were created using the point clouds. The size of any discrepancy between each model and the corresponding reference tooth were measured, and the distribution of these values was analyzed by an inspection software (PowerInspect 2012, Delcamplc., Birmingham, UK). Absolute values of discrepancies were analyzed by the Kruskal-Wallis test and multiple comparisons (${\alpha}$=.05). RESULTS. The discrepancy between the impressions for the canine, premolar, and molar teeth were $6.3{\mu}m$ (95% confidence interval [CI], 5.4-7.2), $6.4{\mu}m$ (95% CI, 5.3-7.6), and $8.9{\mu}m$ (95% CI, 8.2-9.5), respectively. The discrepancy of the molar tooth impression was significantly higher than that of other tooth types. The largest variation (as mean [SD]) in discrepancies was seen in the premolar tooth impression scans: $26.7{\mu}m$ (95% CI, 19.7-33.8); followed by canine and molar teeth impressions, $16.3{\mu}m$ (95% CI, 15.3- 17.3), and $14.0{\mu}m$ (95% CI, 12.3-15.7), respectively. CONCLUSION. The repeatability of the digitizing abutment teeth's silicon rubber impressions by using a white light scanner was improved compared to that with a laser scanner, showing only a low mean discrepancy between $6.3{\mu}m$ and $8.9{\mu}m$, which was in an clinically acceptable range. Premolar impression with a long and narrow shape showed a significantly larger discrepancy than canine and molar impressions. Further work is needed to increase the digitizing performance of the white light scanner for deep and slender impressions.

      • KCI등재

        White light scanner-based repeatability of 3-dimensional digitizing of silicon rubber abutment teeth impressions

        전진훈,이경탁,김혜영,김지환,김웅철 대한치과보철학회 2013 The Journal of Advanced Prosthodontics Vol.5 No.4

        PURPOSE. The aim of this study was to evaluate the repeatability of the digitizing of silicon rubber impressions of abutment teeth by using a white light scanner and compare differences in repeatability between different abutment teeth types. MATERIALS AND METHODS. Silicon rubber impressions of a canine, premolar, and molar tooth were each digitized 8 times using a white light scanner, and 3D surface models were created using the point clouds. The size of any discrepancy between each model and the corresponding reference tooth were measured, and the distribution of these values was analyzed by an inspection software (PowerInspect 2012, Delcamplc., Birmingham, UK). Absolute values of discrepancies were analyzed by the Kruskal–allis test and multiple comparisons (α=.05). RESULTS. The discrepancy between the impressions for the canine, premolar, and molar teeth were 6.3 μm (95% confidence interval [CI], 5.4-7.2), 6.4 μm (95% CI, 5.3-7.6), and 8.9 μm (95% CI, 8.2-9.5), respectively. The discrepancy of the molar tooth impression was significantly higher than that of other tooth types. The largest variation (as mean [SD]) in discrepancies was seen in the premolar tooth impression scans: 26.7 μm (95% CI, 19.7-33.8); followed by canine and molar teeth impressions, 16.3 μm (95% CI, 15.3- 17.3), and 14.0 μm (95% CI, 12.3-15.7), respectively. CONCLUSION. The repeatability of the digitizing abutment teeth’ silicon rubber impressions by using a white light scanner was improved compared to that with a laser scanner, showing only a low mean discrepancy between 6.3 μm and 8.9 μm, which was in an clinically acceptable range. Premolar impression with a long and narrow shape showed a significantly larger discrepancy than canine and molar impressions. Further work is needed to increase the digitizing performance of the white light scanner for deep and slender impressions.

      • KCI등재후보
      • KCI등재

        백색광 스캐너로 채득된 치과용 디지털모형의 정확도와 신뢰도 평가

        김기백(Ki-Baek Kim),김재홍(Jae-Hong Kim) 한국콘텐츠학회 2012 한국콘텐츠학회논문지 Vol.12 No.10

        치과용 스캐너를 기반으로 하는 디지털 모형은 기존의 전통적인 석고모형을 대체할 만큼 발전되고 있다. 본 연구의 목적은 디지털모형의 정확도와 신뢰도를 평가하고자 하였다. 상악의 전악모형을 주 모형으로 설정하여 주 모형으로부터 석고모형을 제작하였고(N=10), 치과용 백색광 스캐너를 이용하여 10개의 디지털모형 데이터를 채득하였다. 제작된 두 실험군(석고모형, 디지털모형)을 1명의 검사자가 2회에 걸쳐서 6곳의 계측지점을 측정하였다. 짝 표본 t-검정과 급내 상관계수을 이용하여 통계적인 분석을 하였다. 실험결과 측정값의 검사자 내 신뢰도는 급내 상관계수 결과 두 실험군 0.75에서 0.87의 범위를 보였다. 석고모형과 디지털 모형의 평균 오차값은 0.11mm에서 0.23mm의 범위를 나타내었고, 모든 계측지점에서 통계적으로 유의한 차이를 보였다(P<0.05). 본 실험결과 모든 계측지점에서 적정수준의 정확성은 확보되지 않았으나, 선행연구에 비추어 볼 때 임상적인 효용성은 검증되었다. 추가적으로 임상적인 사례를 통해 평가되어야 할 것으로 사료된다. Dental scanner-based dental digital models have been developed that have the potential to replace conventional stone model. The aim of this study was examine the accuracy and reliability of measurements made on digital models. A master model with the prepared upper full arch tooth was used. Stone model(N=10) were produced from master model, and on the other hands, digital models were made with the white light scanner(Identica, korea). One examiner individually measured 6 parameters on the conventional model and the digital models on two occasions. The students t-test for paired samples and intra-class correlation coefficient(ICC) were used for statistical analysis. At the intra-examiner reliability of measurement, ICC at the stone and digital models were 0.75 and 0.87. The mean difference between measurements made directly on the stone models and those made on the digital models was 0.11-0.23mm, and was statistically significant(P<0.05). These in vitro studies show that accuracy of the digital model is similar to that of the stone model. These results will have to be confirmed in further clinical studies.

      • KCI등재

        Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision

        전진훈,김혜영,김지환,김웅철 대한치과보철학회 2014 The Journal of Advanced Prosthodontics Vol.6 No.6

        PURPOSE. This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by 10°–20° and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal–Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann–Whitney U test with Bonferroni correction (α=.05). RESULTS. Precision discrepancies for the canine, premolar, and molar were 3.7 μm, 3.2 μm, and 7.3 μm, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were 6.2 μm, 11.2 μm, and 21.8 μm, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION. In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

      • SCIESCOPUSKCI등재

        Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision

        Jeon, Jin-Hun,Kim, Hae-Young,Kim, Ji-Hwan,Kim, Woong-Chul The Korean Academy of Prosthodonitics 2014 The Journal of Advanced Prosthodontics Vol.6 No.6

        PURPOSE. This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by $10^{\circ}-20^{\circ}$ and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (${\alpha}=.05$). RESULTS. Precision discrepancies for the canine, premolar, and molar were $3.7{\mu}m$, $3.2{\mu}m$, and $7.3{\mu}m$, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were $6.2{\mu}m$, $11.2{\mu}m$, and $21.8{\mu}m$, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION. In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

      • SCIESCOPUSKCI등재

        Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision

        Jin-Hun Jeon,Hae-Young Kim,Ji-Hwan Kim,Woong-Chul Kim 대한치과보철학회 2014 The Journal of Advanced Prosthodontics Vol.6 No.6

        PURPOSE This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by 10°-20° and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS Precision discrepancies for the canine, premolar, and molar were 3.7 µm, 3.2 µm, and 7.3 µm, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were 6.2 µm, 11.2 µm, and 21.8 µm, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼