RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Exploring the Influence of Vehicle Mobility on Information Spreading in VANETs

        ( Zhigang Li ),( Xin Wang ),( Xinan Yue ),( Yingli Ji ),( Hua Wang ) 한국인터넷정보학회 2021 KSII Transactions on Internet and Information Syst Vol.15 No.2

        With the advent of 5G communications, internet of vehicles technology has been widely used in vehicles. Then the dynamic spread of information between vehicles began to come into focus with more research. It is well known that the identification of nodes with great spread influence has always been a hot topic in the field of information spreading. Most of the existing work measures the propagation influence by degree centrality, betweenness centrality and closeness centrality. In this paper, we will identify influential vehicle nodes based on the mobility characteristics of vehicles to explore the information spreading between vehicles in VANETs. Different from the above methods, we mainly explore the influence of the radius of gyration and vehicle kilometers of travel on information spreading. We use a real vehicle trajectory data to simulate the information transmission process between vehicles based on the susceptible-infected-recovered SIR model. The experimental results show that the influence of information spreading does not enhance with increasing radius of gyration and vehicle kilometers of travel. The fact is that both the radius of gyration and the distance travelled have a significant influence on information spreading when they are close to the median. When the value of both is large or small, it has little influence on information spreading. In view of this results, we can use the radius of gyration and vehicle kilometers of travel to better facilitate the transmission of information between vehicles.

      • KCI등재

        Generation of autochthonous mouse models of clear cell renal cell carcinoma: mouse models of renal cell carcinoma

        Weibin Hou,Zhigang Ji 생화학분자생물학회 2018 Experimental and molecular medicine Vol.50 No.-

        Renal cell carcinoma (RCC) is one of the 10 most common cancers worldwide, and to date, a strong systemic therapy has not been developed to treat RCC, even with the remarkable modern advances in molecular medicine mostly due to our incomplete understanding of its tumorigenesis. There is a dire unmet need to understand the etiology and progression of RCC, especially the most common subtype, clear cell RCC (ccRCC), and to develop new treatments for RCC. Genetically engineered mouse (GEM) models are able to mimic the initiation, progression, and metastasis of cancer, thus providing valuable insights into tumorigenesis and serving as perfect preclinical platforms for drug testing and biomarker discovery. Despite substantial advances in the molecular investigation of ccRCC and monumental efforts that have been performed to try to establish autochthonous animal models of ccRCC, this goal has not been achieved until recently. Here we present a review of the most exciting progress relevant to GEM models of ccRCC.

      • KCI등재

        Protective Effect of Astragaloside IV against Matrix Metalloproteinase- 1 Expression in Ultraviolet-Irradiated Human Dermal Fibroblasts

        Bo Yang,Chao Ji,Xiaodong Chen,Lunbiao Cui,Zhigang Bi,Yinsheng Wan,Jinhua Xu 대한약학회 2011 Archives of Pharmacal Research Vol.34 No.9

        Ultraviolet (UV) irradiation induces skin photoaging associated with up-regulated matrix metalloproteinase (MMP) expression. Inhibition of MMP expression is suggested to alleviate photoaging induced by UV irradiation. Astragaloside IV (As-IV), one of the main active ingredients of Astragalus membranaceus (Fisch) Bge, has been reported to have various biological activities. However, its anti-photoaging effect has not been examined to date. In the present study, we observed the effect of As-IV on matrix metalloproteinase-1 (MMP-1) expression in UV-irradiated human dermal fibroblasts (HDFs). We found that treatment with As-IV significantly decreased UV-induced MMP-1 expression at the messenger RNA and protein levels. In addition, western blotting analysis revealed that As-IV concentration-dependently suppressed UV-induced phosphorylation of extracellular-regulated protein kinase, Jun-N-terminal kinase and p38 mitogen-activated protein kinase (MAPK). Furthermore, treatment with As-IV markedly inhibited UV-induced nuclear factor kappaB (NF-κB) activity. These results suggest that As-IV down-regulates UV-induced MMP-1 expression, perhaps through suppression of MAPK and NF-κB activation in HDFs. As-IV is thus a potential agent for the management of skin photoaging.

      • KCI등재

        Study of the heat transfer performance of gravity heat pipes based on lattice Boltzmann surface modification

        Hongren Zhan,Shuai Li,Quan Li,Ruting Lin,Zhihao Jin,Baichen Ji,Gang Zhang,Zhigang Zhang 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.10

        Surface modification is an important means to improve boiling heat transfer. Based on the research of surface wettability, this paper briefly describes the experimental and numerical simulation research on enhancing heat transfer of gravity heat pipe by changing surface wettability. According to the microscopic nature and mesoscopic characteristics of lattice Boltzmann method, the gas-liquid model of pseudo-potential lattice Boltzmann method was used to simulate the heat transfer process of gravity heat pipe with different wettability, and the corresponding morphology diagrams of boiling and condensation phenomena were obtained. It not only overcomes the disadvantage that it is difficult to study the bubble nucleation mechanism by arranging seed bubbles or seed droplets in advance when simulating phase transition in the macro flow model, but also overcomes the defect that Lennard-Jones potential in molecular dynamics cannot accurately describe the force between fluid molecules and wall solid molecules. Then, combining the simulated visual images and experimental results, the heat transfer mechanism of gravity heat pipes with different wetting properties is analyzed in detail. The results show that compared with ordinary heat pipes, the equivalent convection heat transfer coefficient of fully mixed wettability gravity heat pipe is increased by about 45.6 % and the total thermal resistance is reduced by about 40.2 %, which provides a theoretical basis for practical application.

      • SCISCIESCOPUS

        Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review

        Rathore, Bhowmira,Sunwoo, Kyoung,Jangili, Paramesh,Kim, Jiseon,Kim, Ji Hyeon,Huang, Meina,Xiong, Jia,Sharma, Amit,Yang, Zhigang,Qu, Junle,Kim, Jong Seung Elsevier 2019 Biomaterials Vol.211 No.-

        <P><B>Abstract</B></P> <P>Lysosomes, an important organelle of eukaryotic cells, are covered with the cell membrane and contain an array of degradative enzymes. The disrupt in lysosomal functions may lead to the development of severe diseases. In nanotechnology, nanomaterials working mechanism and its biomedical output are highly dependent on the lysosomes as it plays a crucial role in intracellular transport. Several nanomaterials specifically designed for lysosome-related actions are highly advantageous in trafficking and delivering the loaded imaging/therapeutic agents. But for other applications, especially gene-based therapeutic delivery into the sub-organelles such as mitochondria and nucleus, lysosomal related degradation could be an obstacle to achieve a maximal therapeutic index. In order to understand the relationship between lysosomes and designed nanomaterials for kind of desired application in biomedical research, complete knowledge of their various designing strategies, size dependent or ligand supportive cellular uptake mechanisms, trafficking, and localizations in eukaryotic cells is highly desired. In this review, we intended to discuss various nanomaterial types that have been applied in biomedical applications based on lysosomal internalization and escape from endo/lysosomes and explored their related advantages/disadvantages. Additionally, we also deliberated nanomaterials direct translocation mechanism, their autophagic accumulation and the underlying mechanism to induced autophagy. Finally, some challenges and critical issues in current research from clinical application perspective has also been addressed. Great understanding of these factors will help in understanding and facilitating the development of safe and effective lysosomal related nanomaterial-based imaging/therapeutic systems for future applications.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼