RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Shear behavior of steel reinforced concrete shallow floor beam: Experimental and theoretical study

        Yang Chen,Chong Ren,Yuqing Yuan,Yong Yang 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.44 No.5

        This paper reports experimental investigation on shear behavior of steel reinforced concrete (SRC) shallow floor beam, where the steel shape is embedded in concrete and the high strength bolts are used to transfer the shear force along the interface between the steel shape and concrete. Six specimens were conducted aiming to provide information on shear performance and explore the shear bearing capacity of SRC shallow floor beams. The effects of the height of concrete slab, the size and the type of the steel section on shear performance of beams were also analyzed in the test. Based on the strut-and-tie model, the shear strength of the SRC shallow floor beam was proposed. Experimental results showed that composite shallow floor beam exhibited satisfactory composite behavior and all of the specimen failed in shear failure. The shear bearing capacity increased with the increasing of height of concrete slab and the size of steel shape, and the bearing capacities of beam specimens with castellated steel shape was slightly lower than those of specimens with H-shaped steel section. Furthermore, the calculations for evaluating the shear bearing capacity of SRC shallow floor beam were verified to be reasonable.

      • Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model

        Yuqing Yang,Zaigen Mu,Boli Zhu 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.84 No.1

        Steel plate shear walls (SPSWs) are commonly utilized to provide lateral stiffness in high-rise structures. The simplified model is frequently used instead of the fine-scale model in the design of buildings with SPSWs. To predict the lateral strength of steel plate shear walls with diagonal stiffeners (DS-SPSWs), a simplified model is presented, namely the cross bracestrip model (CBSM). The bearing capacity and internal forces of columns for DS-SPSWs are calculated. In addition, a modification coefficient is introduced to account for the shear action of the thin plate. The feasibility of the CBSM is validated by comparing the numerical results with theoretical and experimental results. The numerical results from the CBSM and finescale model, which represent the bearing capacity of the DS-SPSW with varied stiffened plate dimensions, are in good accord with the theoretical values. The difference in bearing capacity between the CBSM and the fine-scale model is less than 1.35%. The errors of the bearing capacity from the CBSM are less than 5.67% when compared to the test results of the DS-SPSW. Furthermore, the shear and axial forces of CBSM agree with the results of the fine-scale model and theoretical analysis. As a result, the CBSM, which reflects the contribution of diagonal stiffeners to the lateral resistance of the SPSW as well as the effects on the shear and axial forces of the columns, can significantly improve the design accuracy and efficiency of buildings with DS-SPSWs.

      • KCI등재

        In situ Copolymerized Toughened Polymethyl Methacrylate (PMMA) with Highly Transparency for Support Film of Polarizers

        Yingying Wang,Bin Yang,Liangyong He,Yuqing Yang,Nuo Zhang,Yang Wang,Zhiqiang Shi,Yuchao Ke,Lifen Su,Jia-Sheng Qian,RU XIA,Tao Jiang 한국고분자학회 2022 폴리머 Vol.46 No.5

        In this study, a series of poly(methyl methacrylate) (PMMA) copolymer films were prepared via solutionpolymerization of methyl methacrylate (MMA) with butyl acrylate (BA) and lauryl methacrylate (LMA) as monomers. Mechanical properties, hydrophobic properties, and optical properties of the films were intensively investigated. The rheological results showed that the fluidity of the copolymer was considerably enhanced. When the monomer ratio ofMMA:BA:LMA was 100:30:10, the copolymer film S4 showed the best overall performance with perfect optical transparency maintained. The results of the dynamic mechanical and thermal analysis suggested that the glass transition temperature (Tg) moved towards lower temperature, with enhanced ductility of the PMMA films. A large number of yieldfolds and crazes appeared on the cross-sectional surface of copolymer films through morphological observations, displaying the obvious characteristics of toughness fracture and obeying the energy dissipation mechanism of cracks shearband. The present study provided a facile way of preparing PMMA films with high toughness and light transmittanceby appropriate selection of the monomers, which will be of practical significance for further studies on the replacementof triacetyl cellulose as a support film of polarizers.

      • KCI등재

        Note on the results with lower semi-continuity

        Yuqing Chen,조열제,Li Yang 대한수학회 2002 대한수학회보 Vol.39 No.4

        In this paper, we introduce the concept of lower semi-continuous from above functions and show that many well-known results, such as Ekland's and Caristi's theorems, remain also true under lower semi-continuous from above functions

      • KCI등재

        Comparative transcriptome analysis to reveal key ethylene genes involved in a Lonicera macranthoides mutant

        Long YuQing,Zeng Juan,Yang Min,Zhou XinRu,Zeng Mei,Liu ChangYu,Tong QiaoZhen,Zhou RiBao,Liu XiangDan 한국유전학회 2023 Genes & Genomics Vol.45 No.4

        Background Lonicera macranthoides Hand.-Mazz. is an important medicinal plant. Xianglei-type (XL) L. macranthoides was formed after many years of cultivation by researchers on the basis of the natural mutant. The corolla of L. macranthoides XL remains unexpanded and its flowering period is nearly three times longer than that of wild-type (WT) plants. However, the molecular mechanism behind this desirable trait remains a mystery. Objective To understand the floral phenotype differences between L. macranthoides and L. macranthoides XL at the molecular level. Methods Transcriptome analysis was performed on L. macranthoides XL and WT. One DEG was cloned by RT-PCR amplification and selected for qRT-PCR analysis. Results Transcriptome analysis showed that there were 5603 differentially expressed genes (DEGs) in XL vs. WT. Enrichment analysis of DEGs showed that pathways related to plant hormone signal transduction were significantly enriched. We identified 23 key genes in ethylene biosynthesis and signal transduction pathways. The most abundant were the ethylene biosynthesis DEGs. In addition, the open reading frames (ORFs) of WT and XL ETR2 were successfully cloned and named LM-ETR2 (GenBank: MW334978) and LM-XL-ETR2 (GenBank: MW334978), respectively. qRT-PCR at different flowering stages suggesting that ETR2 acts in the whole stage of flower development of WT and XL. Conclusions This study provides new insight into the molecular mechanism that regulates the development of special traits in the flowers of L. macranthoides XL. The plant hormone ethylene plays an important role in flower development and flowering duration prolongation in L. macranthoides. The ethylene synthesis gene could be more responsible for the flower phenotype of XL. The genes identified here can be used for breeding and improvement of other flowering plants after functional verification.

      • SCIESCOPUSKCI등재

        NOTE ON THE RESULTS WITH LOWER SEMI-CONTINUITY

        Chen, Yuqing,Cho, Yeol-Je,Yang, Li Korean Mathematical Society 2002 대한수학회보 Vol.39 No.4

        In this paper, we introduce the concept of lower semi-continuous from above functions and show that many well-known results, such as Ekland's and Caristi's theorems, remain also true under lower semi-continuous from above functions.

      • Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron

        Lei, Cheng,Sun, Yuqing,Khan, Eakalak,Chen, Season S.,Tsang, Daniel C.W.,Graham, Nigel J.D.,Ok, Yong Sik,Yang, Xin,Lin, Daohui,Feng, Yujie,Li, Xiang-Dong Elsevier 2018 CHEMOSPHERE - Vol.196 No.-

        <P><B>Abstract</B></P> <P>With the increasing application of hydraulic fracturing, it is urgent to develop an effective and economically feasible method to treat the large volumes of fracturing wastewater. In this study, bare and entrapped nanoscale zero-valent iron (nZVI) were introduced for the removal of carbon tetrachloride (CT) and 1,1,2-trichloroethane (TCA) in model high-salinity fracturing wastewater. With increasing ionic strength (<I>I</I>) from Day-1 (<I>I</I> = 0.35 M) to Day-90 (<I>I</I> = 4.10 M) wastewaters, bare nZVI presented significantly lower removal efficiency of CT (from 53.5% to 38.7%) and 1,1,2-TCA (from 71.1% to 21.7%) and underwent more serious Fe dissolution from 1.31 ± 1.19% in Day-1 to 5.79 ± 0.32% in Day-90 wastewater. Particle aggregation induced by high ionic strength was primarily responsible for the lowered performance of nZVI due to less available reactive sites on nZVI surface. The immobilization of nZVI in alginate with/without polyvinyl alcohol provided resistance to particle aggregation and contributed to the superior performance of entrapped nZVI in Day-90 wastewater for 1,1,2-TCA removal (62.6–72.3%), which also mitigated Fe dissolution (4.00–4.69%). Both adsorption (by polymer matrix) and reduction (by immobilized nZVI) were involved in the 1,1,2-TCA removal by entrapped nZVI. However, after 1-month immersion in synthetic fracturing wastewater, a marked drop in the reactivity of entrapped nZVI for 1,1,2-TCA removal from Day-90 wastewater was observed with significant release of Na and total organic carbon. In summary, bare nZVI was sensitive to the nature of the fracturing wastewater, while the use of environmentally benign entrapped nZVI was more promising for wastewater treatment.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Increasing ionic strength decreased nZVI reactivity and increased Fe dissolution. </LI> <LI> Entrapping nZVI in polymer matrix improved reactivity and limited Fe dissolution. </LI> <LI> Entrapped nZVI removed model chlorinated organic via both adsorption and reduction. </LI> <LI> Aging process was mitigated by polymer matrix but still inhibited nZVI reactivity. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        One-round Secure Key Exchange Protocol With Strong Forward Secrecy

        ( Xiaowei Li ),( Dengqi Yang ),( Benhui Chen ),( Yuqing Zhang ) 한국인터넷정보학회 2016 KSII Transactions on Internet and Information Syst Vol.10 No.11

        Security models for key exchange protocols have been researched for years, however, lots of them only focus on what secret can be compromised but they do not differentiate the timing of secrets compromise, such as the extended Canetti-Krawczyk (eCK) model. In this paper, we propose a new security model for key exchange protocols which can not only consider what keys can be compromised as well as when they are compromised. The proposed security model is important to the security proof of the key exchange protocols with forward secrecy (either weak forward secrecy (wFS) or strong forward secrecy (sFS)). In addition, a new kind of key compromise impersonation (KCI) attacks which is called strong key compromise impersonation (sKCI) attack is proposed. Finally, we provide a new one-round key exchange protocol called mOT+ based on mOT protocol. The security of the mOT+ is given in the new model. It can provide the properties of sKCI-resilience and sFS and it is secure even if the ephemeral key reveal query is considered.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼