RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Facile preparation of antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic polyvinylidene fluoride membranes for effective removal of rhodamine B

        Yanhua Cui,Lili Yang,Minjia Meng,Qi Zhang,Binrong Li,Yilin Wu,Yunlei Zhang,Jihui Lang,Chunxiang Li 한국화학공학회 2019 Korean Journal of Chemical Engineering Vol.36 No.2

        A simplified strategy for facilely fabricating antifouling graphite carbon nitride/silver phosphate (g-C3N4/ Ag3PO4) nanocomposite photocatalytic polyvinylidene fluoride (PVDF) porous membranes was developed for effective removal of rhodamine B (RhB). g-C3N4/Ag3PO4 heterojunction was strongly fixed to the interior of the PVDF membranes via phase inversion method. The membrane structure was analyzed by Fourier transform spectrophotometer (FT-IR). The morphology of the prepared membranes was investigated using scanning electron microscopy (SEM), EDX-mapping and atomic force microscopy (AFM), respectively. All prepared nanocomposite photocatalytic PVDF membranes exhibited a typically porous structure, and g-C3N4/Ag3PO4 nanocomposites were well dispersed inside the membranes. The obtained g-C3N4/Ag3PO4 heterojunction nanoparticle decorated PVDF membrane had a lower water contact angle of 79o and higher porosity of 85% than that of other two control membranes. The nanocomposite photocatalytic PVDF porous membranes had extremely high permeation flux over 1,083 L·m−2·h−1, and could be used for the removal of RhB. The removal efficiency of g-C3N4/Ag3PO4-PVDF membranes towards RhB solution under visible light irradiation reached 97%, higher than that of the pure PVDF membranes (41%) and g-C3N4-PVDF membranes (85%). Remarkably, the flux performance and flux recovery ratio (FRR) of membranes revealed that the g-C3N4/Ag3PO4- PVDF membranes could recover high flux after fouling, which presented better fouling resistance. Furthermore, the fabricated antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic PVDF porous membranes exhibited excellent recyclability. Therefore, it is expected that g-C3N4/Ag3PO4-PVDF membranes could provide an energy-saving strategy for effective removal of organic dyes wastewater and have a great potential for practical wastewater treatment in the future.

      • KCI등재

        Study of the relationship between variants near CCNL1/LEKR1 and in ADCY5 with low birth weight in a Chinese population

        Xuejin Fan,Qi Peng,Yanhua Chen,Zeke Ma,Xiaoguang He,Biying Deng,Hui Huang,Juan Zeng,Chuyun Cheng,Shaoji Liu,Xiaomei Lu 한국유전학회 2015 Genes & Genomics Vol.37 No.12

        The aim of this study was to test the impact of variants rs900400 (located near LEKR1 and CCNL1) and rs9883204 (located in ADCY5) on birth weight in a Chinese population. We conducted a case–control study including 156 low-birth- weight infants as the case group and 100 normal-birth-weight infants as the control group. The rs900400 and rs9883204 variants were analyzed by gene sequencing in all the participants. Our results revealed a significant difference in the genotype distribution (v2 = 10.449, p = 0.005) and allele distribution (v2 = 9.277, p = 0.002) of rs900400 between the case group and the control group. The C allele of rs900400 was associated with lower birth weight (OR 1.771 [95 % CI 1.237–2.535]) in the Chinese population. However, the rs9883204 polymorphism was not informative in the Chinese population. Our study shows that the ‘‘birth weightlowering’’ variant rs900400 located near LEKR1 and CCNL1, which is strongly associated with birth weight in European cohorts, appears to have a similar association in Chinese cohorts. However, the rs9883204 variant located in ADCY5 does not appear to be correlated with low birth weight in the same population. Moreover, we found that the variant rs900400 may also be associated with premature birth, thereby supporting the need for further research in this area.

      • KCI등재

        Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

        Dong Lifeng,Gao Yanhua,Jing Xuelan,Guo Huiping,Zhang Hongsen,Lai Qi,Diao Qiyu 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.9

        Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems. Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment.Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation.Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production.Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

      • KCI등재

        Identification of a mimotope of an infectious bronchitis virus S1 protein

        Jingming Zhou,Jianan Li,Yanghui Li,Hongliang Liu,Yanhua Qi,Aiping Wang 대한수의학회 2021 Journal of Veterinary Science Vol.22 No.4

        The S1 protein of the infectious bronchitis virus (IBV) is a major structural protein that induces the production of the virus-neutralization antibodies. The monoclonal antibody against the IBV M41 S1 protein was used as a target for biopanning. After three rounds of biopanning, randomly selected phages bound to the monoclonal antibody. Sequence analysis showed that the dominant sequence was SFYDFEMQGFFI. Indirect competitive enzyme-linked immunosorbent assay showed that SFYDFEMQGFFI is a mimotope of the S1 protein that was predicted by PepSurf. The mimotope may provide information for further structural and functional analyses of the S1 protein.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼