RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • The Evaluation System of New Digital Home Shopping Service

        Mengke Yang,Jianqiu Zeng,Mengru Shen,Hao Dong 보안공학연구지원센터 2015 International Journal of Smart Home Vol.9 No.6

        This paper mainly discusses the evaluation system for the users of the new digital home shopping service based on HD (High Definition) -interactive shopping platform. The suggestion is to change from the channel with playing functions to the column with interactive functions for public goods since HD -interactive digital shopping is a Chinese government policy for three networks convergence, and it is a new model to provide the home shopping directly and realize economic objectives for telecom operators.

      • Controlled synthesis of nanoplate, nanoprism and nanopyramid-shaped CdSe decorated on porous TiO<sub>2</sub> photocatalysts for visible-light-driven hydrogen evolution

        Yang, Mengke,Qian, Yongteng,Du, Jimin,Yuan, Sijie,Wang, Sijia,Zhu, Xinrui,Lin, Xialing,Li, Kaidi,Li, Sujuan,Kang, Dae Joon Elsevier 2018 Ceramics international Vol.44 No.11

        <P><B>Abstract</B></P> <P>Herein, we report a successful synthesis of porous TiO<SUB>2</SUB> monoliths decorated with unique nanoplate, nanoprism, and nanopyramid-shaped CdSe particles through a mild selenylation of CdO embedded inside porous TiO<SUB>2</SUB> monoliths via a hydrothermal method in a very controlled manner. Compared with pure TiO<SUB>2</SUB>, as-synthesized CdSe/TiO<SUB>2</SUB> photocatalyst not only enhances light absorption but also leads to a highly efficient charge-carrier separation. Particularly, the nanoplate-shaped 7% CdSe/TiO<SUB>2</SUB> photocatalyst (molar percentages of CdSe to TiO<SUB>2</SUB> is 7:100) exhibits an exceptional hydrogen evolution rate up to 3650 μmol h<SUP>−1</SUP> g<SUP>−1</SUP> without resorting to any noble-metal co-catalysts under visible-light irradiation owing to synergistic effects envisaged by a rational material design. Our results may provide a useful strategy to develop a highly-efficient visible-light-driven hydrogen production system via water splitting.</P>

      • The Television Shopping Service Model Based on HD Interactive TV Platform

        Mengke Yang,Jianqiu Zeng 보안공학연구지원센터 2014 International Journal of u- and e- Service, Scienc Vol.7 No.6

        With the rapid development of Internet and television technology, users are not satisfied with the "one-stop" integrated service, they put forward higher requirements in time and interactive function. HD(High Definition) interactive TV platform as an integrated service platform by means of the network, communication, and video technology, can supply highly personalized and interactive shopping service for users. This paper focus the television shopping service based on HD interactive TV platform, does the research on the influencing factors to evaluate the television shopping service on HD interactive TV platform and then it comes to the conclusion that product quality, product price, product payment security, product payment ways, high- quality logistics service and other factors can influent the television shopping service based on HD interactive TV platform. So HD Interactive TV Platform should carry out the series of strategies from the point view of service providers, payment platforms and logistics to improve the interactive service quality.

      • KCI등재

        Experimental Study and Statistical Theory of Creep Behavior of Warm Frozen Silt

        Mengke Liao,Yuan-Ming Lai,Junjie Yang,Shuangyang Li 대한토목학회 2016 KSCE Journal of Civil Engineering Vol.20 No.6

        To investigate the soil parameters and stochastic mechanical characteristics of warm frozen silt, a series of triaxial compression tests were conducted on frozen silt at the temperature of -1.5°C under confining pressures of 0.5, 1.0, and 2.0 MPa. The results indicate that the creep properties of warm frozen silt are affected considerably by stress levels. The creep show present primary and secondary creep stages under low stress level and indicate that the specimen is destroyed quickly under high stress levels. Based on phenomenological theory, a unified creep constitutive model of warm frozen silt was proposed. The results predicted by the proposed model agree well with corresponding experimental data. Investigation of the random distribution has revealed that the parameters of the proposed creep model could be better described by a normal distribution. Based on the dynamic theory of frozen soil strength, the long-term strength of warm frozen silt was obtained, and was found to exhibit nonlinear behavior with increasing confining pressure. The Weibull function can represent the random distribution well, and the reliabilities of long-term strength were given under different confining pressures.

      • A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO<sub>3</sub>/TiO<sub>2</sub> photocatalysts

        Qian, Yongteng,Yang, Mengke,Zhang, Fangfang,Du, Jimin,Li, Kaidi,Lin, Xialing,Zhu, Xinrui,Lu, Yayun,Wang, Weimin,Kang, Dae Joon Elsevier 2018 Materials characterization Vol.142 No.-

        <P><B>Abstract</B></P> <P>It is well known that both catalytic efficiency and stability are the two important parameters of photocatalysts for visible-light-driven hydrogen production reactions. However, light-driven hydrogen evolution based applications still suffer from sluggish reaction kinetics due to the lack of high-performance photocatalysts. In this paper, we successfully synthesized a ternary porous CdS/WO<SUB>3</SUB>/TiO<SUB>2</SUB> photocatalyst with high efficiency and stability via two-stage approach. The as-prepared samples are characterized by XRD, FESEM, EDS, TEM, XPS, and UV–Vis, respectively, which illustrated that the CdS and WO<SUB>3</SUB> moieties are in-situ formed inside the porous TiO<SUB>2</SUB>. Particularly, the photocatalytic hydrogen (H<SUB>2</SUB>) evolution rate of such ternary 8% CdS/WO<SUB>3</SUB>/TiO<SUB>2</SUB> (molar ration of CdS:WO<SUB>3</SUB>:TiO<SUB>2</SUB> = 8:8:100) photocatalyst ranges up to 2106 μmol h<SUP>−1</SUP> g<SUP>−1</SUP> under visible-light irradiation, which is higher than that of pure TiO<SUB>2</SUB> and other binary (CdS/TiO<SUB>2</SUB> and WO<SUB>3</SUB>/TiO<SUB>2</SUB>) porous photocatalysts. The superior H<SUB>2</SUB> evolution efficiency can be attributed to the coexistence of CdS and WO<SUB>3</SUB> in porous TiO<SUB>2</SUB> which can promote the interfacial charge transfer and separation as well as extend the light absorption up to the visible range.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Highly efficient and stable photocatalytic activity of CdS/WO<SUB>3</SUB>/TiO<SUB>2</SUB> photocatalysts were synthesized by a two-step method. </LI> <LI> CdS and WO<SUB>3</SUB> inlaid on porous TiO<SUB>2</SUB> can extend the light absorption and enhance photogenerated electron-hole pairs separation. </LI> <LI> The porous structure can provide more reaction active sites and improve photoproduced-electrons and holes transport speed. </LI> </UL> </P> <P><B>Graphical Abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Two-component zeolite-alumina system for toluene trapping with subsequent nonthermal plasma mineralization

        Caihong Qin,Mengke Guo,Yang Zheng,Rui Yu,Jiayu Huang,Xiaoqing Dang,Dongjie Yan 한국공업화학회 2021 Journal of Industrial and Engineering Chemistry Vol.95 No.-

        Two-component zeolite-alumina packed dielectric barrier discharge plasma was developed to deeplymineralize toluene. Compared with packing ZSM-5 and g-Al2O3 separately in layers, uniform mixing ofZSM-5 and g-Al2O3 was more conducive to the mineralization of adsorbed toluene in nonthermal plasma. When the mixing ratio of ZSM-5 to g-Al2O3 was 1:2, the mineralization rate reached 80% afterdischarging for 120 min. Ag supported on the catalyst surface significantly improved the selectivity ofCO2. Increased relative humidity had little effect on the mineralization of adsorbed toluene, butsignificantly reduced the byproducts O3 and N2O. The adsorption and plasma mineralizationperformance of Ag/ZSM-5-g-Al2O3 duringfive cycles of toluene adsorption was stable with only thepeak concentration of CO showing a slight upward trend. GC–MS, TG, and XPS characterization of freshand used catalysts revealed deactivation of Ag/ZSM-5-g-Al2O3 in terms of CO oxidation due tointermediate organic residues and decreased amounts of Ag+ and lattice oxygen on the support ZSM-5instead of g-Al2O3.

      • Enhanced charge separation of CuS and CdS quantum-dot-cosensitized porous TiO<sub>2</sub>-based photoanodes for photoelectrochemical water splitting

        Du, Jimin,Yang, Mengke,Zhang, Fangfang,Cheng, Xuechun,Wu, Haoran,Qin, Huichuang,Jian, Qingsong,Lin, Xialing,Li, Kaidi,Kang, Dae Joon Elsevier 2018 CERAMICS INTERNATIONAL Vol.44 No.3

        <P><B>Abstract</B></P> <P>Photoelectrochemical (PEC) water splitting using high-performance catalysts shows considerable promise in generating environment-friendly hydrogen energy. Its practical applications, however, suffer from several shortcomings, such as low photocurrent density, large onset-voltage value, and poor durability. In this study, CuS and CdS quantum-dot-cosensitized porous TiO<SUB>2</SUB>-based PEC catalysts (CuS-CT) have been successfully synthesized via in situ sulfuration of CuO and CdO coexisting inside a porous TiO<SUB>2</SUB> monolith by a hydrothermal method. Compared to porous TiO<SUB>2</SUB>, CuS-sensitized porous TiO<SUB>2</SUB> (CuS-TiO<SUB>2</SUB>), and CdS-sensitized porous TiO<SUB>2</SUB> (CdS-TiO<SUB>2</SUB>) in terms of PEC performance, the CuS-CT photoanode exhibited a significantly high anodic photocurrent for water splitting under simulated sunlight radiation. The photocurrent produced by the optimized sample of 7% CuS-5% CdS-TiO<SUB>2</SUB> (7% CuS-CT) was nearly 2.7 times higher than that of pure porous TiO<SUB>2</SUB> at 1.0V versus a reversible hydrogen electrode (RHE). Porous TiO<SUB>2</SUB> possesses large surface areas that can drive fast electrolyte transport and afford more surface reaction active sites. On the other hand, CuS and CdS quantum dots not only broaden the visible light absorption range, but also improve photoinduced electron-hole separation efficiency. The co-sensitized multi-nanostructures photoanodes lead to a remarkable and promising application in PEC water splitting reactions.</P>

      • SCISCIESCOPUS

        Highly efficient hydrogen evolution catalysis based on MoS<sub>2</sub>/CdS/TiO<sub>2</sub> porous composites

        Du, Jimin,Wang, Huiming,Yang, Mengke,Zhang, Fangfang,Wu, Haoran,Cheng, Xuechun,Yuan, Sijie,Zhang, Bing,Li, Kaidi,Wang, Yina,Lee, Hyoyoung Elsevier 2018 International journal of hydrogen energy Vol.43 No.19

        <P><B>Abstract</B></P> <P>Efficient production of hydrogen through visible-light-driven water splitting mechanism using semiconductor-based composites has been identified as a promising strategy for converting light into clean H<SUB>2</SUB> fuel. However, researchers are facing lots of challenges such as light absorption and electron-hole pair recombination and so on. Here, new sheet-shaped MoS<SUB>2</SUB> and pyramid-shaped CdS <I>in-situ</I> co-grown on porous TiO<SUB>2</SUB> photocatalysts (MoS<SUB>2</SUB> CdSTiO<SUB>2</SUB>) are successfully obtained <I>via</I> mild sulfuration of MoO<SUB>3</SUB> and CdO coexisted inside porous TiO<SUB>2</SUB> monolith by a hydrothermal route. The scanning electron microscopy and transmission electron microscopy results exhibit that the MoS<SUB>2</SUB> CdSTiO<SUB>2</SUB> composites have average pore size about 500 nm. The 3%MoS<SUB>2</SUB> 10%CdSTiO<SUB>2</SUB> demonstrated excellent photocatalytic activity and high stability for a hydrogen production with a high H<SUB>2</SUB>-generation rate of 4146 μmol h<SUP>−1</SUP> g<SUP>−1</SUP> under visible light irradiation even without noble-metal co-catalysts. The super photocatalytic performance of the visible-light-driven hydrogen evolution is predominantly attributed to the synergistic effect. The conduction band of MoS<SUB>2</SUB> facilitates in transporting excited electrons from visible-light on CdS to the porous TiO<SUB>2</SUB> for catalytic hydrogen production, and holes to MoS<SUB>2</SUB> for inhibiting the photocorrosion of CdS, respectively, leading to enhancing the efficient separation of electrons and holes.</P> <P><B>Highlights</B></P> <P> <UL> <LI> MoS<SUB>2</SUB>-CT photocatalysts have been successfully synthesized by two-step method. </LI> <LI> The porous structure can enhance photogenerated electron-hole pairs separation. </LI> <LI> The 3% MoS<SUB>2</SUB>-CT shows an excellent H<SUB>2</SUB> evolution rate of 4146 μmol h<SUP>−1</SUP> g<SUP>−1</SUP>. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • SCISCIESCOPUS

        Pyramid-like CdS nanoparticles grown on porous TiO<sub>2</sub> monolith: An advanced photocatalyst for H<sub>2</sub> production

        Du, Jimin,Wang, Huiming,Yang, Mengke,Li, Kaidi,Zhao, Lixin,Zhao, Guoyan,Li, Sujuan,Gu, Xiaolei,Zhou, Yalan,Wang, Le,Gao, Yating,Wang, Weimin,Kang, Dae Joon Pergamon Press 2017 Electrochimica Acta Vol. No.

        <P><B>Abstract</B></P> <P>Efficient production of H<SUB>2</SUB> via solar-light-driven water splitting by a semiconductor-based photocatalyst without noble metals is crucial owing to increasingly severe global energy and environmental issues. However, many challenges, including the low efficiency of H<SUB>2</SUB> evolution, low solar light absorption, excited electron–hole pair recombination, and slow transport of photoexcited carriers, must be resolved to enhance the H<SUB>2</SUB> photoproduction efficiency and photocatalyst stability. Here, a two-step method is used to synthesize advanced H<SUB>2</SUB>-generating photocatalysts consisting of pyramid-like CdS nanoparticles grown on a porous TiO<SUB>2</SUB> monolith, which show promising photocatalytic activity for the hydrogen evolution reaction. Furthermore, the stability of the photocatalysts is examined through long-term tests to verify their good durability. Without noble metals as cocatalysts, the photocatalyst can reach a high H<SUB>2</SUB> production rate of 1048.7μmolh<SUP>−1</SUP> g<SUP>−1</SUP> under UV–vis irradiation when the ratio of the CdS nanoparticles to TiO<SUB>2</SUB> is 5mol%. This unusual photocatalytic activity arises from the wide-region light adsorption due to the narrow band gap of CdS, effective separation of electrons and holes due to conduction band alignment at the CdS–TiO<SUB>2</SUB> interface, and favorable reaction sites resulting from the porous structure.</P>

      • KCI등재

        Response Surface Methodology for Optimizing the Preparation Process of Cellulose Acetate/Polylactic Acid Nonwoven Surgical Gown Material

        Shujie Zhang,Lisong Fu,Zhaowei Yang,Mengke Jing,Ziwei Zhang,Shijian Xiang,Rui Wang 한국섬유공학회 2021 Fibers and polymers Vol.22 No.4

        In view of the problems that traditional woven surgical gowns are prone to cross infection in blocking blood andliquid spillage, cellulose acetate (CA)/polylactic acid (PLA) nonwoven materials were prepared to improve the functionalrequirements of surgical materials in combination with the rapidly developing green fibers. Fiber mixing ratio, fiber webareal weight and water jet pressure were selected to optimize the preparation process of cellulose acetate/polylactic acid (CA/PLA) nonwoven materials with moisture permeability and filtration efficiency. The results showed that the fiber mixing ratiowas 49:51, and the fiber web areal weight was 130 g/m2, and the water jet pressure was 7 MPa. Under this process, moisturepermeability is 5240.86 g/(m2·h), and the filtration efficiency is 38.12 %, which is close to the theoretical value. It shows thatthe response surface method has practical application value, indicating that the response surface method has practicalapplication value, and can provide a theoretical basis for the preparation process parameters of barrier and comfort nonwovensurgical gowns at the same time.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼