RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        GATA4 Forms a Positive Feedback Loop with CDX2 to Transactivate MUC2 in Bile Acids-Induced Gastric Intestinal Metaplasia

        ( Xiaofang Yang ),( Ting Ye ),( Li Rong ),( Hong Peng ),( Jin Tong ),( Xiao Xiao ),( Xiaoqiang Wan ),( Jinjun Guo ) 대한소화기기능성질환·운동학회 2024 Gut and Liver Vol.18 No.3

        Background/Aims: Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified. Methods: The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunopre-cipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids. Results: GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa. Conclusions: GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid. (Gut Liver 2024;18:414-425)

      • KCI등재

        Ferroptosis: A Novel Anti-tumor Action for Cisplatin

        Jipeng Guo,Bingfei Xu,Qi Han,Hongxia Zhou,Yun Xia,Chongwen Gong,Xiaofang Dai,Zhenyu Li,Gang Wu 대한암학회 2018 Cancer Research and Treatment Vol.50 No.2

        Purpose Ferroptosis is a new mode of regulated cell death, which is completely distinct from other cell death modes based on morphological, biochemical, and genetic criteria. This study evaluated the therapeutic role of ferroptosis in classic chemotherapy drugs, including the underlying mechanism. Materials and Methods Cell viability was detected by using the methylthiazoltetrazlium dye uptake method. RNAi was used to knockout iron-responsive element binding protein 2, and polymerase chain reaction, western blot was used to evaluate the efficiency. Intracellular reduced glutathione level and glutathione peroxidases activity were determined by related assay kit. Intracellular reactive oxygen species levels were determined by flow cytometry. Electron microscopy was used to observe ultrastructure changes in cell. Results Among five chemotherapeutic drugs screened in this study, cisplatin was found to be an inducer for both ferroptosis and apoptosis in A549 and HCT116 cells. The depletion of reduced glutathione caused by cisplatin and the inactivation of glutathione peroxidase played the vital role in the underlying mechanism. Besides, combination therapy of cisplatin and erastin showed significant synergistic effect on their anti-tumor activity. Conclusion Ferroptosis had great potential to become a new approach in anti-tumor therapies and make up for some classic drugs, which open up a new way for their utility in clinic.

      • KCI등재

        Enhanced photocatalytic performance of TiO2 nanowires by substituting noble metal particles with reduced graphene oxide

        Fei Yuchen,Ye Xiaofang,Al-Baldawy Aseel Shaker,Wan Jing,Lan Jinshen,Zhao Jingtian,Wang Ziyun,Qu Shanzhi,Hong Rongdun,Guo Shengshi,Huang Shengli,Li Shuping,Kang Junyong 한국물리학회 2022 Current Applied Physics Vol.44 No.-

        Noble metal particles have been embedded in semiconductors to improve photocatalysis efficiently, but the high cost made this approach difficult to apply widely in industry. Herein titanium dioxide/reduced graphene oxide (TiO2/rGO) nanowires in a core-shell structure were prepared. The physicochemical properties and photocatalytic performance of the specimen were characterized in comparison with TiO2 and TiO2/Pt nanowires. The rGO layer and Pt nanoparticles increased chemical states of the components, reduced bandgap energy of the nanowires, enhanced visible light absorption, improved conductance and capacitance significantly. The methylene blue as catalyzed by TiO2/Pt and TiO2/rGO nanowires was degraded to 7.9% and 8.4% in an hour, but retained 25.7% by the TiO2 nanowires. The properties and function of TiO2/rGO nanowires were close to those of TiO2/Pt nanowires, while the rGO price was much lower than that of Pt, which was of great significance for the photocatalytic application of TiO2 heterojunction materials in industry.

      • KCI등재

        Effects of strain on the optical and magnetic properties of Ce-doped ZnO

        Zhenchao Xu,Qingyu Hou,Feng Guo,Xiaofang Jia,Cong Li,Wenling Li 한국물리학회 2018 Current Applied Physics Vol.18 No.12

        The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with −1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with −1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with −3%, −2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with −1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman–Kittel–Kasuya–Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

      • SCIESCOPUSKCI등재

        Activin and Hepatocyte Growth Factor Promotes Colorectal Cancer Stemness and Metastasis through FOXM1/SOX2/CXCR4 Signaling

        ( Hong Peng ),( Ting Ye ),( Lei Deng ),( Xiaofang Yang ),( Qingling Li ),( Jin Tong ),( Jinjun Guo ) 대한소화기기능성질환·운동학회 2024 Gut and Liver Vol.18 No.3

        Background/Aims: Cancer stem cells (CSCs) are believed to drive tumor development and metastasis. Activin and hepatocyte growth factor (HGF) are important cytokines with the ability to induce cancer stemness. However, the effect of activin and HGF combination treatment on CSCs is still unclear. Methods: In this study, we sequentially treated colorectal cancer cells with activin and HGF and examined CSC marker expression, self-renewal, tumorigenesis, and metastasis. The roles of forkhead box M1 (FOXM1) and sex-determining region Y-box 2 (SOX2), two stemness-related transcription factors, in activin/HGF-induced aggressive phenotype were explored. Results: Activin and HGF treatment increased the expression of CSC markers and enhanced sphere formation in colorectal cancer cells. The tumorigenic and metastatic capacities of colorectal cancer cells were enhanced upon activin and HGF treatment. Activin and HGF treatment preferentially promoted stemness and metastasis of CD133<sup>+</sup> subpopulations sorted from colorectal cancer cells. FOXM1 was upregulated by activin and HGF treatment, and the knockdown of FOXM1 blocked activin/HGF-induced stemness, tumorigenesis, and metastasis of colorectal cancer cells. Similarly, SOX2 was silencing impaired sphere formation of activin/HGF-treated colorectal cancers. Overexpression of SOX2 rescued the stem cell-like phenotype in FOXM1-depleted colorectal cancer cells with activin and HGF treatment. Additionally, the inhibition of FOXM1 via thiostrepton suppressed activin/HGF-induced stemness, tumorigenesis and metastasis. Conclusions: Sequential treatment with activin and HGF promotes colorectal cancer stemness and metastasis through activation of the FOXM1/SOX2 signaling. FOXM1 could be a potential target for the treatment of colorectal cancer metastasis. (Gut Liver 2024;18:476-488)

      • SCIESCOPUSKCI등재

        Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola

        ( Xu Hongyan ),( Xie Zhanling ),( Jiang Hongchen ),( Guo Jing ),( Meng Qing ),( Zhao Yuan ),( Wang Xiaofang ) 한국균학회 2021 Mycobiology Vol.49 No.4

        Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50mg/L Cd<sup>2+</sup>. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼