RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Semi-Rational Screening of Probiotics from the Fecal Flora of Healthy Adults against DSS-Induced Colitis Mice by Enhancing Anti-Inflammatory Activity and Modulating the Gut Microbiota

        ( Weiwei Wang ),( Wentao Xing ),( Sichen Wei ),( Qiaoying Gao ),( Xinliang Wei ),( Liang Shi ),( Yu Kong ),( Zhenhua Su ) 한국미생물생명공학회(구 한국산업미생물학회) 2019 Journal of microbiology and biotechnology Vol.29 No.9

        Ulcerative colitis (UC), a chronic inflammatory bowel disease, substantially impacts patients’ health-related quality of life. In this study, an effective strategy for discovering high-efficiency probiotics has been developed. First, in order to survive in the conditions of the stomach and intestine, high bile salt-resistant and strong acid-resistant strains were screened out from the fecal flora of healthy adults. Next, the probiotic candidates were rescreened by examining the induction ability of IL-10 (anti-inflammatory factor) production in dextran sodium sulfate (DSS)-induced colitis mice, and Lactobacillus sakei 07 (L07) was identified and selected as probiotic P. In the end, fourteen bifidobacterium strains isolated from stools of healthy males were examined for their antimicrobial activity. Bifidobacterium bifidum B10 (73.75% inhibition rate) was selected as probiotic B. Moreover, the colonic IL-6 and TNF-α expression of the DSS-induced colitis mice treated with L. sakei 07 (L07) - B. bifidum B10 combination (PB) significantly decreased and the IL-10 expression was up-regulated by PB compared to the DSS group. Furthermore, Bacteroidetes and Actinobacteria decreased and Firmicutes increased in the DSS group mice, significantly. More interestingly, the intestinal flora biodiversity of DSS colitis mice was increased by PB. Of those, the level of B. bifidum increased significantly. The Bacteriodetes/Firmicutes (B/F) ratio increased, and the concentration of homocysteine and LPS in plasma was down-regulated by PB in the DSS-induced colitis mice. Upon administration of PB, the intestinal permeability of the the DSS-induced colitis mice was decreased by approximately 2.01-fold. This method is expected to be used in high-throughput screening of the probiotics against colitis. In addition, the L. sakei 07 - B. bifidum B10 combination holds potential in UC remission by immunomodulatory and gut microbiota modulation.

      • KCI등재

        Transcriptome analysis of Dioscorea zingiberensis identifies genes involved in diosgenin biosynthesis

        Wenping Hua,Weiwei Kong,XiaoYan Cao,Chen Chen,Qian Liu,Xiangmin Li,Zhezhi Wang 한국유전학회 2017 Genes & Genomics Vol.39 No.5

        Dioscorea zingiberensis is the main plant source of diosgenin, a precursor for the production of steroid hormones used in the pharmaceutical industry. The extraction process of diosgenin from D. zingiberensis can generate high-acid and high-strength wastewater on a large scale and can threaten the environment. Bioengineering microorganisms to produce diosgenin is an effective way to avoid pollution. However, little is known about the genes that are involved in the biosynthesis of diosgenin. We obtained 85,010 unigenes (average length of 1142 bases) from the D. zingiberensis transcriptome through RNAseq. A large number of unigenes (59,368; 69.83%) were annotated, and 2488 unigenes were assigned to 27 secondary- metabolite pathways. In our database, 66 unigenes encoding up to 40 key enzymes were found to be present in diosgenin biosynthesis pathways. In addition, we found 203 unigenes encoding CYP450 proteins and 47 unigenes encoding UGT proteins that may be involved in modifications of a downstream pathway. The expression patterns of key diosgenin biosynthesis genes were studied to identify the most important members of the enzyme family. These results add to the available genetic data of D. zingiberensis and lay the foundation for the further production of diosgenin using genetic engineering.

      • KCI등재

        Curcumin protects against the intestinal ischemia-reperfusion injury: involvement of the tight junction protein ZO-1 and TNF-α related mechanism

        Shuying Tian,Ruixue Guo,Sichen Wei,Yu Kong,Xinliang Wei,Weiwei Wang,Xiaomeng Shi,Hongyu Jiang 대한생리학회-대한약리학회 2016 The Korean Journal of Physiology & Pharmacology Vol.20 No.2

        Present study aimed to investigate the effect of curcumin-pretreatment on intestinal I/R injury and on intestinal mucosa barrier. Thirty Wistar rats were randomly divided into: sham, I/R, and curcumin groups (n=10). Animals in curcumin group were pretreated with curcumin by gastric gavage (200 mg/kg) for 2 days before I/R. Small intestine tissues were prepared for Haematoxylin & Eosin (H&E) staining. Serum diamine oxidase (DAO) and tumor necrosis factor (TNF)-α levels were measured. Expression of intestinal TNF-α and tight junction protein (ZO-1) proteins was detected by Western blot and/or immunohistochemistry. Serum DAO level and serum and intestinal TNF-α leves were significantly increased after I/R, and the values were markedly reduced by curcumin pretreatment although still higher than that of sham group (p<0.05 or p<0.001). H&E staining showed the significant injury to intestinal mucosa following I/R, and curcumin pretreatment significantly improved the histological structure of intestinal mucosa. I/R insult also induced significantly down-regulated expression of ZO-1, and the effect was dramatically attenuated by curcumin-pretreatment. Curcumin may protect the intestine from I/R injury through restoration of the epithelial structure, promotion of the recovery of intestinal permeability, as well as enhancement of ZO-1 protein expression, and this effect may be partly attributed to the TNF-α related pathway.

      • SCIESCOPUSKCI등재

        Curcumin protects against the intestinal ischemia-reperfusion injury: involvement of the tight junction protein ZO-1 and TNF-α related mechanism

        Tian, Shuying,Guo, Ruixue,Wei, Sichen,Kong, Yu,Wei, Xinliang,Wang, Weiwei,Shi, Xiaomeng,Jiang, Hongyu The Korean Society of Pharmacology 2016 The Korean Journal of Physiology & Pharmacology Vol.20 No.2

        Present study aimed to investigate the effect of curcumin-pretreatment on intestinal I/R injury and on intestinal mucosa barrier. Thirty Wistar rats were randomly divided into: sham, I/R, and curcumin groups (n=10). Animals in curcumin group were pretreated with curcumin by gastric gavage (200 mg/kg) for 2 days before I/R. Small intestine tissues were prepared for Haematoxylin & Eosin (H&E) staining. Serum diamine oxidase (DAO) and tumor necrosis factor (TNF)-${\alpha}$ levels were measured. Expression of intestinal TNF-${\alpha}$ and tight junction protein (ZO-1) proteins was detected by Western blot and/or immunohistochemistry. Serum DAO level and serum and intestinal TNF-${\alpha}$ leves were significantly increased after I/R, and the values were markedly reduced by curcumin pretreatment although still higher than that of sham group (p<0.05 or p<0.001). H&E staining showed the significant injury to intestinal mucosa following I/R, and curcumin pretreatment significantly improved the histological structure of intestinal mucosa. I/R insult also induced significantly down-regulated expression of ZO-1, and the effect was dramatically attenuated by curcumin-pretreatment. Curcumin may protect the intestine from I/R injury through restoration of the epithelial structure, promotion of the recovery of intestinal permeability, as well as enhancement of ZO-1 protein expression, and this effect may be partly attributed to the TNF-${\alpha}$ related pathway.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼