RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Sustainable Agriculture: Developing a Conceptual Model for Technology Transfer

        Ainur K. BORANBAYEVA,Rui Dinis SOUSA,Dinara Zh,RAKHMATULLAYEVA 한국유통과학회 2018 KODISA ICBE (International Conference on Business Vol.2018 No.-

        Agriculture is the world’s largest industry. It is not only crucial for the well-being of the world population but also for most citizens whose prosperity is closely connected with the level of development in the agriculture industry. However, agriculture often places significant pressure on natural resources and the environment. According to the Food and Agriculture Organization, we pay an intolerable price in social and ecological terms to provide food for 7.5 billion people in the world. To be sustainable, while increasing the productivity, agriculture needs to preserve the environment and improve the social conditions of the population. The transfer of existing technology, for example, from developed countries, as well as new technology from research and development centers, can help in achieving the right balance in essential dimensions for sustainable agriculture. Building upon technology transfer models at the international level developed for the construction and the petroleum industries, we propose first a set of factors. Then, for each factor, while scrutinizing other technology transfer models at the inter-firm level, relevant sub factors were selected. The result is a conceptual model for technology transfer to be applied in the agriculture sector under a sustainable perspective.

      • Sensory neurons and osteoblasts: close partners in a microfluidic platform

        Neto, Estrela,Alves, Cecí,lia J.,Sousa, Daniela M.,Alencastre, Inê,s S.,Lourenç,o, Ana H.,Leitã,o, Luí,s,Ryu, Hyun R.,Jeon, Noo L.,Fernandes, Rui,Aguiar, Paulo,Almeida, Ra Oxford University Press 2014 Integrative biology Vol.6 No.6

        <P>Innervation has proven to be critical in bone homeostasis/regeneration due to the effect of soluble factors, produced by nerve fibers, associated with changes in the activity of bone cells. Thus, in this study, we have established and characterized a coculture system comprising sensory neurons and osteoblasts to mimic the <I>in vivo</I> scenario where nerve fibers can be found in a bone microenvironment. Embryonic or adult primary dorsal root ganglion (DRG) and MC3T3-E1 osteoblastic cells were cocultured in compartmentalized microfluidic platforms and morphological and functional tests were performed. The time of adhesion and readout of axonal outgrowth were improved by the alignment of DRG with the axis of microgrooves, which showed to be a crucial step for the designed experiments. Cocultures of entire DRG from adult origin with osteoblasts were performed, showing extended DRG projections towards the axonal compartment, reaching osteoblastic cells. Immunocytochemistry showed that the neurites present within the osteoblastic compartment were immunoreactive to synapsin and calcitonin gene-related peptide suggesting the presence of specialized structures involved in this crosstalk. This evidence was further confirmed by electron microscopy where varicosities were detected as well as electron dense structures in neurite membranes. Aiming to mimic the properties of tissue extracellular matrices, MC3T3-E1 cells were seeded in the axonal side upon laminin, collagen or within 3D functionalized alginate matrices and axonal outgrowth was clearly observed. In order to analyze and quantify data with reproducible image analysis, a semi-automated algorithm was also developed. The collagen and laminin substrates displayed a higher amount of axons reaching the axonal side. Overall, the established method revealed to be a suitable tool to study the interaction between the peripheral nervous system and bone cells in different contexts mimicking the <I>in vivo</I> scenario.</P>

      • KCI등재

        In Vitro Blood Flow and Cell-Free Layer in Hyperbolic Microchannels: Visualizations and Measurements

        Raquel O. Rodrigues,Raquel Lopes,Diana Pinho,Ana I. Pereira,Valdemar Garcia,Stefan Gassmann,Patrícia C. Sousa,Rui Lima 한국바이오칩학회 2016 BioChip Journal Vol.10 No.1

        Red blood cells (RBCs) in microchannels has tendency to undergo axial migration due to the parabolic velocity profile, which results in a high shear stress around wall that forces the RBC to move towards the centre induced by the tank treading motion of the RBC membrane. As a result there is a formation of a cell free layer (CFL) with extremely low concentration of cells. Based on this phenomenon, several works have proposed microfluidic designs to separate the suspending physiological fluid from whole in vitro blood. This study aims to characterize the CFL in hyperbolic-shaped microchannels to separate RBCs from plasma. For this purpose, we have investigated the effect of hyperbolic contractions on the CFL by using not only different Hencky strains but also varying the series of contractions. The results show that the hyperbolic contractions with a Hencky strain of 3 and higher, substantially increase the CFL downstream of the contraction region in contrast with the microchannels with a Hencky strain of 2, where the effect is insignificant. Although, the highest CFL thickness occur at microchannels with a Hencky strain of 3.6 and 4.2 the experiments have also shown that cells blockage are more likely to occur at this kind of microchannels. Hence, the most appropriate hyperbolic-shaped microchannels to separate RBCs from plasma is the one with a Hencky strain of 3. Red blood cells (RBCs) in microchannels has tendency to undergo axial migration due to the parabolic velocity profile, which results in a high shear stress around wall that forces the RBC to move towards the centre induced by the tank treading motion of the RBC membrane. As a result there is a formation of a cell free layer (CFL) with extremely low concentration of cells. Based on this phenomenon, several works have proposed microfluidic designs to separate the suspending physiological fluid from whole in vitro blood. This study aims to characterize the CFL in hyperbolic-shaped microchannels to separate RBCs from plasma. For this purpose, we have investigated the effect of hyperbolic contractions on the CFL by using not only different Hencky strains but also varying the series of contractions. The results show that the hyperbolic contractions with a Hencky strain of 3 and higher, substantially increase the CFL downstream of the contraction region in contrast with the microchannels with a Hencky strain of 2, where the effect is insignificant. Although, the highest CFL thickness occur at microchannels with a Hencky strain of 3.6 and 4.2 the experiments have also shown that cells blockage are more likely to occur at this kind of microchannels.Hence, the most appropriate hyperbolic-shaped microchannels to separate RBCs from plasma is the one with a Hencky strain of 3.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼