RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Multi-Inlet Microfluidic Nozzle Head with Shape Memory Alloy-Based Switching for Biomaterial Printing with Precise Flow Control

        Karthick Mani,Wei-Chen Lin,Chun-Fang Wang,Bivas Panigrahi,Yong-Jin Wu,Cheng-Lung Wu,Chia-Yuan Chen 한국바이오칩학회 2020 BioChip Journal Vol.14 No.4

        3D bioprinting is one of the rapidly evolving fields of tissue engineering where microengineering meets cells biology within an unprecedented precision to construct tissue structures of various forms with complexity. However, enabling simultaneous printing of heterogeneous biomaterial along with scaffold components through the currently available printers is still considered as a major challenge due to the lack of instrumentation. Flow control is one of the major issues associated with the process. In this aspect, a microfluidic nozzle head equipped with two shape-memory alloy (SMA) actuators was proposed and integrated with a commercially available 3D printer to assist the biomaterial printing in a more systematic manner. The SMA actuator restrains the amount of flows for fabricating the desired scaffold components. Experimental results illustrated that the use of SMA actuator ensued a rapid and precise flow control of biomaterial and can further facilitate to maintain the width of any printed structures. As a proof of concept for the profound biomedical applications with the present manufacturing configuration, a 3D printed hydrogel platform was fabricated with demonstrated characters for later cell seeding after the printing further opens a new chapter in terms of biomaterial printing.

      • KCI등재

        Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

        Xuenan Chen,Manying Wang,Xiaohao Xu,Jianzeng Liu,Bing Mei,Pingping Fu,Da-Qing Zhao,Liwei Sun 고려인삼학회 2017 Journal of Ginseng Research Vol.41 No.3

        Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor b1, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed byWestern blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor b1 and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

      • SCIESCOPUSKCI등재

        Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

        Chen, Xuenan,Wang, Manying,Xu, Xiaohao,Liu, Jianzeng,Mei, Bing,Fu, Pingping,Zhao, Daqing,Sun, Liwei The Korean Society of Ginseng 2017 Journal of Ginseng Research Vol.41 No.3

        Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor ${\beta}1$, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor ${\beta}1$ and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

      • KCI등재

        Ginsenosides repair UVB-induced skin barrier damage in BALB/c hairless mice and HaCaT keratinocytes

        Zhenzhuo Li,Rui Jiang,Manying Wang,Lu Zhai,Jianzeng Liu,Xiaohao Xu,Liwei Sun,Daqing Zhao 고려인삼학회 2022 Journal of Ginseng Research Vol.46 No.1

        Background: Ginsenosides (GS) have potential value as cosmetic additives for prevention of skin photoaging. However, their protective mechanisms against skin barrier damage and their active monomeric constituents are unknown. Methods: GS monomer types and their relative proportions were identified. A UVB-irradiated BALB/c hairless mouse model was used to assess protective effects of GS components on skin epidermal thickness and transepidermal water loss (TEWL). Skin barrier function, reflected by filaggrin (FLG), involucrin (IVL), claudin-1 (Cldn-1), and aquaporin 3 (AQP3) levels and MAPK phosphorylation patterns, were analyzed in UVB-irradiated hairless mice or HaCaT cells. Results: Total GS monomeric content detected by UPLC was 85.45% and was largely attributed to 17 main monomers that included Re (16.73%), Rd (13.36%), and Rg1 (13.38%). In hairless mice, GS ameliorated UVB-induced epidermal barrier dysfunction manifesting as increased epidermal thickness, increased TEWL, and decreased stratum corneum water content without weight change. Furthermore, GS treatment of UVB-irradiated mice restored protein expression levels and epidermal tissue distributions of FLG, IVL, Cldn-1, and AQP3, with consistent mRNA and protein expression results obtained in UVB-irradiated HaCaT cells (except for unchanging Cldn-1 expression). Mechanistically, GS inhibited JNK, p38, and ERK phosphorylation in UVB-irradiated HaCaT cells, with a mixture of Rg2, Rg3, Rk3, F2, Rd, and Rb3 providing the same protective MAPK pathway inhibition-associated upregulation of IVL and AQP3 expression as provided by intact GS treatment. Conclusion: GS protection against UVB-irradiated skin barrier damage depends on activities of six ginsenoside monomeric constituents that inhibit the MAPK signaling pathway.

      • SCISCIESCOPUS
      • KCI등재

        Characterization of clutch traits and egg production in six chicken breeds

        Shi Lei,Li Yunlei,Isa Adam Mani,Ma Hui,Yuan Jingwei,Wang Panlin,Ge Pingzhuang,Gong Yanzhang,Chen Jilan,Sun Yanyan 아세아·태평양축산학회 2023 Animal Bioscience Vol.36 No.6

        Objective: The better understanding of laying pattern of birds is crucial for developing breed-specific proper breeding scheme and management. Methods: Daily egg production until 50 wk of age of six chicken breeds including one layer (White Leghorn, WL), three dual-purpose (Rhode Island Red, RIR; Columbian Plymouth Rock, CR; and Barred Plymouth Rock, BR), one synthetic dwarf (DY), and one indigenous (Beijing-You Chicken, BYC) were used to characterize their clutch traits and egg production. The age at first egg, egg number, average and maximum clutch length, pause length, and number of clutches and pauses were calculated accordingly. Results: The egg number and average clutch length in WL, RIR, CR, and BR were higher than those in DY and BYC (p<0.01). The numbers of clutches and pauses, and pause length in WL, RIR, CR, and BR were lower than those in DY and BYC (p<0.01). The coefficient variations of clutch length in WL, RIR, CR, and BR (57.66%, 66.49%, 64.22%, and 55.35%, respectively) were higher than DY (41.84%) and BYC (36.29%), while the coefficient variations of egg number in WL, RIR, CR, and BR (9.10%, 9.97%, 10.82%, and 9.92%) were lower than DY (15.84%) and BYC (16.85%). The clutch length was positively correlated with egg number (r = 0.51 to 0.66; p<0.01), but not correlated with age at first egg in all breeds. Conclusion: The six breeds showed significant different clutch and egg production traits. Due to the selection history, the high and median productive layer breeds had higher clutch length than those of the less productive indigenous BYC. The clutch length is a proper selection criterion for further progress in egg production. The age at first egg, which is independent of clutch traits, is especially encouraged to be improved by selection in the BYC breed.

      • Novel microporous hypercross-linked polymers as sorbent for volatile organic compounds and CO<sub>2</sub> adsorption

        Vinodh, Rajangam,Jung, Eui Min,Ganesh, Mani,Peng, Mei Mei,Abidov, Aziz,Palanichamy, Muthiahpillai,Cha, Wang Seog,Jang, Hyun Tae Elsevier 2015 Journal of industrial and engineering chemistry Vol.21 No.-

        <P><B>Abstract</B></P> <P>We synthesized highly porous hypercross-linked polymers of (4, 4′-bis ((chloromethyl)-1, 1′-biphenyl-benzyl chloride)) [designated as HCP-BCMB] and (1, 3, 5-triphenyl benzene-1, 4-bis (chloromethyl) benzene) [designated as HCP-TPB] as sorbents for the removal of volatile organic compounds such as chloroform, toluene and ethyl methyl ketone under humidified conditions. The micro-porous nature of the hypercross-linked polymers (pore diameter 0.8nm) was confirmed by Brunner–Emmet–Teller (BET) and scanning electron microscopy (SEM) techniques. HCP-TPB showed a maximum adsorption of 32.8 wt% for toluene. In addition, both the HCPs exhibited CO<SUB>2</SUB> adsorption close to 6 wt% at 25°C and 1atm.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Synthesized highly porous hypercross-linked polymers as a sorbent for the removal of VOCs. </LI> <LI> Porous nature of the HCPs was confirmed by BET and SEM techniques. </LI> <LI> Maximum toluene adsorption of 32.8 wt% by HCP-TPB. </LI> <LI> DRS UV–visible spectroscopy confirms conjugated quinonoid matrix in both the polymers. </LI> </UL> </P>

      • SCISCIESCOPUS

        Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels

        Kim, Sungjun,Kim, Junhyung,Gajendiran, Mani,Yoon, Minhyuk,Hwang, Mintai P.,Wang, Yadong,Kang, Byung-Jae,Kim, Kyobum American Chemical Society 2018 Biomacromolecules Vol.19 No.11

        <P>Direct administration of bone morphogenetic protein-2 (BMP-2) for bone regeneration could cause various clinical side effects such as osteoclast activation, inflammation, adipogenesis, and bone cyst formation. In this study, thiolated gelatin/poly(ethylene glycol) diacrylate (PEGDA) interpenetrating (IPN) composite hydrogels were developed for guided skull bone regeneration. To promote bone regeneration, either polycation-based coacervates (Coa) or gelatin microparticles (GMPs) were incorporated within IPN gels as BMP-2 carriers. Both BMP-2 loaded Coa and BMP-2 loaded GMPs showed significantly enhanced <I>in vitro</I> alkaline phosphate (ALP) activity of human mesenchymal stem cells (hMSCs) than non-BMP-2 treated control. Moreover, BMP-2 loaded GMPs group exhibited statistically increased ALP activity compared to both bolus BMP-2 administration and BMP-2 loaded Coa group, indicating that our carriers could protect and maintain biological activity of cargo BMP-2. Sustained release kinetics of BMP-2 from IPN composite hydrogels could be controlled by different formulations. For <I>in vivo</I> bone regeneration, various IPN gel formulations (i.e., (1) control, (2) only hydrogel, (3) hydrogel with bolus BMP-2, (4) hydrogel with BMP-2-loaded Coa, and (5) hydrogel with BMP-2-loaded GMPs) were bilaterally implanted into 5 mm-sized rat calvarial defects. After 4 weeks, micro-CT and histological analysis were performed to evaluate new bone formation. Significantly higher scores for bony bridging and union were observed in BMP-2-loaded Coa and BMP-2-loaded GMP groups as compared to other formulations. In addition, rats treated with BMP-2-loaded GMPs showed a significantly higher ratio of bone volume/total volume and lower trabecular separation scores than others. Finally, rats treated with either Coa or GMP groups exhibited a significant increase in bone formation area, as assessed via histomorphometric analysis. Taken together, it could be concluded that Coa and GMPs were effective carriers to maintain the bioactivity of cargo BMP-2 during its sustained release. Consequently, our IPN composite hydrogel system that combines such BMP-2 carriers could effectively promote skull bone regeneration.</P> [FIG OMISSION]</BR>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼