RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames

        Rui Jiang,Liqiang Jiang,Yi Hu,Jihong Ye,Lingyu Zhou 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.74 No.6

        The fundamental period is an important parameter for seismic design and seismic risk assessment of building structures. In this paper, a simplified theoretical method to predict the fundamental period of masonry infilled reinforced concrete (RC) frame is developed based on the basic theory of engineering mechanics. The different configurations of the RC frame as well as masonry walls were taken into account in the developed method. The fundamental period of the infilled structure is calculated according to the integration of the lateral stiffness of the RC frame and masonry walls along the height. A correction coefficient is considered to control the error for the period estimation, and it is determined according to the multiple linear regression analysis. The corrected formula is verified by shaking table tests on two masonry infilled RC frame models, and the errors between the estimated and test period are 2.3% and 23.2%. Finally, a probability-based method is proposed for the corrected formula, and it allows the structural engineers to select an appropriate fundamental period with a certain safety redundancy. The proposed method can be quickly and flexibly used for prediction, and it can be hand-calculated and easily understood. Thus it would be a good choice in determining the fundamental period of RC frames infilled with masonry wall structures in engineering practice instead of the existing methods.

      • SCOPUSKCI등재SCIE

        Influence of chlorinated disinfection by-products on transmission of antibiotic resistance genes in biofilms and water of a simulated drinking water distribution system

        Minglu Zhang,Lingyue Zhang,Kaizong Lin,Yue Wang,Shaofeng Xu,Miao Bai,Hairong Jiang,Shuangling Wang,Yongjing Wang,Can Zhang 대한환경공학회 2023 Environmental Engineering Research Vol.28 No.4

        The spread of antibiotic resistance genes (ARGs) caused by biofilm growth in drinking water distribution systems (DWDSs) poses a serious threat to human health. The influence of disinfection by-products (DBPs) on the distribution of ARGs and mobile genetic elements (MGEs) in different phases (biofilms and water) of DWDSs is unclear. In this study, the characteristics of microbial indices, trihalomethanes (THMs), haloacetic acids (HAAs), ARGs and MGEs in biofilms and effluents of simulated DWDS reactors were detected during 150 d of operation. During the mature biofilm periods of 90 d or 120 d, for both biofilms and effluents, seven categories of ARGs (except tetracycline) and MGEs were at their highest and lowest relative abundance in the entire operation cycle, respectively. The influence of DBPs on ARGs and MGEs in the DWDS was different in different phases. In effluents, DBPs showed a stronger relationship with ARGs compared with MGEs. THMs and HAAs had positive correlations with various ARGs, which indicated that DBPs affected the distribution of resistance genes. In biofilms, the influence of MGEs on ARGs was stronger than that of DBPs on ARGs. Thus, DBPs might be an important contributor to the enrichment and spread of ARGs in water.

      • KCI등재

        Genome-wide analysis of maize MBD gene family and expression profiling under abiotic stress treatment at the seedling stage

        Qian Yexiong,Ren Qiaoyu,Jiang Lingyu,Zhang Jing,Chen Changle,Chen Liang 한국식물생명공학회 2020 Plant biotechnology reports Vol.14 No.3

        Methyl-CpG-binding domain (MBD) proteins in plants are important trans-acting factors specifically recognizing methylated DNA. The MBD proteins can compact chromatins to repress transcription by recruiting chromatin-modifying complexes that contain histone deacetylase activities and chromatin remodeling factors, and play a crucial biological role in the growth and development in plants. Currently, very little is known regarding the structure and function of MBD genes in plants. In this study, we performed a genome-wide identification and expression profile analysis of maize MBD genes (ZmMBDs) from the latest version of the maize (B73) genome. By analyzing phylogenetic relationship of MBD gene families from Arabidopsis, rice, wheat, and maize, all 14 MBD proteins in maize were categorized into four subclasses. Furthermore, chromosome location and schematic structure revealed an unevenly distribution on chromosomes and structure features of MBD genes in maize, respectively. Eventually, EST expression data mining, microarray data clustering analysis, and semi-quantitative and quantitative expression profile analyses detected in seedling leaves and stems by heat, drought, and salt-stress treatments have demonstrated that these genes had temporal and spatial expression pattern and exhibited different expression levels under heat, drought, and salt-stress conditions, suggesting that functional diversification of the MBD gene family in maize. In addition, through electrophoretic mobility shift assay (EMSA) a representative MBD protein, ZmMBD11, exhibited in vitro DNA-binding activity, indicating that that the MBD proteins in maize might play a role in reading cytosine methylation. Taken together, these results would provide an important theoretical basis for future functional verification of ZmMBD genes and also facilitate future experimental research to further unravel the mechanisms of epigenetic regulation in plants.

      • SCOPUSSCIE

        Host Langerin (CD207) is a receptor for <i>Yersinia pestis</i> phagocytosis and promotes dissemination

        Yang, Kun,Park, Chae G,Cheong, Cheolho,Bulgheresi, Silvia,Zhang, Shusheng,Zhang, Pei,He, Yingxia,Jiang, Lingyu,Huang, Hongping,Ding, Honghui,Wu, Yiping,Wang, Shaogang,Zhang, Lin,Li, Anyi,Xia, Lianxu,B Nature Publishing Group 2015 Immunology and Cell Biology Vol. No.

        <P><I>Yersinia pestis</I> is a Gram‐negative bacterium that causes plague. After <I>Y. pestis</I> overcomes the skin barrier, it encounters antigen‐presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium‐dependent (C‐type) lectin. Furthermore, <I>Y. pestis</I> possesses exposed core oligosaccharides. In this study, we show that <I>Y. pestis</I> invades LCs and Langerin‐expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, <I>Y. pestis</I> propensity to invade Langerhans and Langerin‐expressing cells decreases. Moreover, the interaction of <I>Y. pestis</I> with Langerin‐expressing transfectants is inhibited by purified Langerin, a DC‐SIGN (DC‐specific intercellular adhesion molecule 3 grabbing nonintegrin)‐like molecule, an anti‐CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of <I>Y. pestis</I> to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by <I>Y. pestis</I>. Therefore, Langerin‐mediated binding of <I>Y. pestis</I> to APCs may promote its dissemination and infection.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼