RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • An advanced Parallel FPGA Architecture for Bi-directional Motion Estimation

        Yangfan Huang,Minjun Deng,Donglian Li,Zhenzhen Li,Mingyan Yu,Cailan Zeng,Yu Zhang,Zhuo Chen,Pengcheng Cao,Ran Liu 보안공학연구지원센터 2015 International Journal of Hybrid Information Techno Vol.8 No.9

        Motion estimation (ME) and motion compensation (MC) are the key elements for frame rate up-conversion (FRUC) system. Fast and accurate motion estimation is the premise of high quality motion compensation. Unlike conventional unidirectional motion estimation which brings holes, overlaps and blocking artifacts, the bi-directional motion estimation does not produce any overlapped pixel or hole in the interpolated frames. As a result, the bi-directional motion estimation has better performance than conventional unidirectional motion estimation. This paper presents an efficient FPGA architecture targeting bi-directional motion estimation hardware implementation. This proposed architecture can achieve real-time processing for 1280x720@60Hz under 200MHz operating frequency. The design is described in Verilog HDL, verified in Virtex5 FPGA platform. Experimental results show that the proposed architecture has high performance and low cost for bi-directional motion estimation algorithm. This architecture can be used for video post-processing system.

      • KCI등재

        Clusterin negatively modulates mechanical stress-mediated ligamentum flavum hypertrophy through TGF-β1 signaling

        Liu Chunlei,Li Peng,Ao Xiang,Lian Zhengnan,Liu Jie,Li Chenglong,Huang Minjun,Wang Liang,Zhang Zhongmin 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal canal stenosis (LSCS). The pathomechanisms for LFH have not been fully elucidated. Isobaric tags for relative and absolute quantitation (iTRAQ) technology, proteomics assessments of human ligamentum flavum (LF), and successive assays were performed to explore the effect of clusterin (CLU) upregulation on LFH pathogenesis. LFH samples exhibited higher cell positive rates of the CLU, TGF-β1, α-SMA, ALK5 and p-SMAD3 proteins than non-LFH samples. Mechanical stress and TGF-β1 initiated CLU expression in LF cells. Notably, CLU inhibited the expression of mechanical stress-stimulated and TGF-β1-stimulated COL1A2 and α-SMA. Mechanistic studies showed that CLU inhibited mechanical stress-stimulated and TGF-β1-induced SMAD3 activities through suppression of the phosphorylation of SMAD3 and by inhibiting its nuclear translocation by competitively binding to ALK5. PRKD3 stabilized CLU protein by inhibiting lysosomal distribution and degradation of CLU. CLU attenuated mechanical stress-induced LFH in vivo. In summary, the findings showed that CLU attenuates mechanical stress-induced LFH by modulating the TGF-β1 pathways in vitro and in vivo. These findings imply that CLU is induced by mechanical stress and TGF-β1 and inhibits LF fibrotic responses via negative feedback regulation of the TGF-β1 pathway. These findings indicate that CLU is a potential treatment target for LFH.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼