RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        MiR-1224-5p modulates osteogenesis by coordinating osteoblast/osteoclast differentiation via the Rap1 signaling target ADCY2

        Hu Liangcong,Xie Xudong,Xue Hang,Wang Tiantian,Panayi Adriana C.,Lin Ze,Xiong Yuan,Cao Faqi,Yan Chengcheng,Chen Lang,Cheng Peng,Zha Kangkang,Sun Yun,Liu Guodong,Yu Chenyan,Hu Yiqiang,Tao Ranyang,Zhou 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies. Osteoblastogenesis and osteoclastogenesis were detected by ALP, ARS, and TRAP staining and bone slice resorption pit assays. The miR-1224-5p target gene was assessed by siRNA-mediated target gene knockdown and luciferase reporter assays. To explore the Rap1 pathway, we performed high-throughput sequencing, western blotting, RT-PCR, chromatin immunoprecipitation assays and immunohistochemical staining. In vivo, bone healing was judged by the cortical femoral defect, cranial bone defect and femoral fracture models. Progression of osteoporosis was evaluated by an ovariectomy model and an aged osteoporosis model. We discovered that the expression of miR-1224-5p was positively correlated with fracture healing progression. Moreover, in vitro, overexpression of miR-1224-5p slowed Rankl-induced osteoclast differentiation and promoted osteoblast differentiation via the Rap1-signaling pathway by targeting ADCY2. In addition, in vivo overexpression of miR-1224-5p significantly promoted fracture healing and ameliorated the progression of osteoporosis caused by estrogen deficiency or aging. Furthermore, knockdown of miRNA-1224-5p inhibited bone regeneration in mice and accelerated the progression of osteoporosis in elderly mice. Taken together, these results identify miR-1224-5p as a key bone osteogenic regulator, which may be a potential therapeutic target for osteoporosis and fracture nonunion.

      • KCI등재

        Influence of lead exposure on growth and transcriptome in wolf spider Pardosa laura

        Hu Lang,Wen Lelei,Wang Lieping,Zheng Cao,Yuan Zihao,Li Changchun 한국응용곤충학회 2024 Journal of Asia-Pacific Entomology Vol.27 No.1

        As a raw material commonly used in industrial production, Pb is often found in the released waste, posing a serious threat to ecosystem and human. Pardosa laura (Araneae: Lycosidae) is one of the most dominant species of spider found in farmland ecosystem and plays a very important role in Pb transfer among the food web. To comprehensively understand the toxicological effects of Pb on spider, we delivered Pb to Pardosa laura through diet, and investigated the Pb effect on spider growth, antioxidase activities and transcriptome. Specifically, Pb hindered the spider growth and resulted in a reduced survival rate. Superoxide dismutase and catalase activities were enhanced in the Pb-exposed spider, while no significant change was found in the glutathione S-transferase activity. 117 up-regulated genes and 60 down-regulated genes were identified in the Pb-exposed spider by using transcriptome sequencing, and these DEGs were mainly enriched in oxidoreductase activity, transmembrane transport, fat digestion and absorption, peptidase activity, apoptosis, peptidase activity and lysosome. The results of this study contribute to the better understanding of the molecular mechanisms underlying the spider response to Pb.

      • KCI등재

        Learning Multiple-Gait Quadrupedal Locomotion via Hierarchical Reinforcement Learning

        Lang Wei,Yunxiang Li,Yunfei Ai,Yuze Wu,Hao Xu,Wei Wang,Guoming Hu 한국정밀공학회 2023 International Journal of Precision Engineering and Vol.24 No.9

        Over long periods of evolution, legged animals have developed the capability to use a variety of gaits to move efficiently and flexibly at different speeds. To enable quadruped robots to acquire this ability, this study proposes a two-stage training hierarchical framework that can have quadruped robots generate energy-efficient multiple-gait locomotion, consisting of a gait selection policy module and a react controller module. The parameters of both modules are optimized using reinforcement learning. The experimental results in the simulation demonstrate that the proposed method can generate energy-efficient multiple-gait quadrupedal locomotion compared to previous methods. To validate the robustness and effectiveness of the method, we constructed a closed-chain quadruped robot and deployed the controller trained by the method to the robot. The experimental results in the real world suggest that the controller can enable the robot to move stably and efficiently in different gaits. The main contribution of this paper is that the authors propose a novel hierarchical framework, which makes quadruped robots use an optimal gait at a specific speed and smoothly switch to another one after getting a different speed command. These behaviors are automatically produced through simulation training, eliminating the need for the tedious work of designing gaits and modulating controllers. Experimental results showcase that the proposed method has significant advantages compared to previous methods.

      • KCI등재

        Cardiac-specific overexpression of Ndufs1 ameliorates cardiac dysfunction after myocardial infarction by alleviating mitochondrial dysfunction and apoptosis

        Qi Bingchao,Song Liqiang,Hu Lang,Guo Dong,Ren Gaotong,Peng Tingwei,Liu Mingchuan,Fang Yexian,Li Chunyu,Zhang Mingming,Li Yan 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Myocardial infarction (MI) is the leading cause of premature death among adults. Cardiomyocyte death and dysfunction of the remaining viable cardiomyocytes are the main pathological factors of heart failure after MI. Mitochondrial complexes are emerging as critical mediators for the regulation of cardiomyocyte function. However, the precise roles of mitochondrial complex subunits in heart failure after MI remain unclear. Here, we show that NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) expression is decreased in the hearts of heart failure patients and mice with myocardial infarction. Furthermore, we found that cardiac-specific Ndufs1 overexpression alleviates cardiac dysfunction and myocardial fibrosis in the healing phase of MI. Our results demonstrated that Ndufs1 overexpression alleviates MI/hypoxia-induced ROS production and ROS-related apoptosis. Moreover, upregulation of Ndufs1 expression improved the reduced activity of complex I and impaired mitochondrial respiratory function caused by MI/hypoxia. Given that mitochondrial function and cardiomyocyte apoptosis are closely related to heart failure after MI, the results of this study suggest that targeting Ndufs1 may be a potential therapeutic strategy to improve cardiac function in patients with heart failure.

      • KCI등재

        Growth Inhibitory and Pro-Apoptotic Effects of Hirsuteine in Chronic Myeloid Leukemia Cells through Targeting Sphingosine Kinase 1

        Gao Shan,Guo Tingting,Luo Shuyu,Zhang Yan,Ren Zehao,Lang Xiaona,Hu Gaoyong,Zuo Duo,Jia Wenqing,Kong Dexin,Yu Haiyang,Qiu Yuling 한국응용약물학회 2022 Biomolecules & Therapeutics(구 응용약물학회지) Vol.30 No.6

        Chronic myeloid leukemia (CML) is a slowly progressing hematopoietic cell disorder. Sphingosine kinase 1 (SPHK1) plays established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers, including leukemia. However, small-molecule inhibitors targeting SPHK1 in CML still need to be developed. This study revealed the role of SPHK1 in CML and investigated the potential anti-leukemic activity of hirsuteine (HST), an indole alkaloid obtained from the oriental plant Uncaria rhynchophylla, in CML cells. These results suggest that SPHK1 is highly expressed in CML cells and that overexpression of SPHK1 represents poor clinical outcomes in CML patients. HST exposure led to G2/M phase arrest, cellular apoptosis, and downregulation of Cyclin B1 and CDC2 and cleavage of Caspase 3 and PARP in CML cells. HST shifted sphingolipid rheostat from sphingosine 1-phosphate (S1P) towards the ceramide coupled with a marked inhibition of SPHK1. Mechanistically, HST significantly blocked SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways. In addition, HST can be docked with residues of SPHK1 and shifts the SPHK1 melting curve, indicating the potential protein-ligand interactions between SPHK1 and HST in both CML cells. SPHK1 overexpression impaired apoptosis and proliferation of CML cells induced by HST alone. These results suggest that HST, which may serve as a novel and specific SPHK1 inhibitor, exerts anti-leukemic activity by inhibiting the SPHK1/S1P/ S1PR1 and BCR-ABL/PI3K/Akt pathways in CML cells, thus conferring HST as a promising anti-leukemic drug for CML therapy in the future.

      • KCI등재

        Circulating MiRNA-21-enriched extracellular vesicles promote bone remodeling in traumatic brain injury patients

        Lin Ze,Xiong Yuan,Sun Yun,Zeng Ruiyin,Xue Hang,Hu Yiqiang,Chen Lang,Liu Guodong,Panayi Adriana C.,Zhou Wu,Cao Faqi,Gao Fei,Mi Bobin,Liu Guohui 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        Fracture combined with traumatic brain injury (TBI) is one of the most common and serious types of compound trauma in the clinic and is characterized by dysfunction of cellular communication in injured organs. Our prior studies found that TBI was capable of enhancing fracture healing in a paracrine manner. Exosomes (Exos), as small extracellular vesicles, are important paracrine vehicles for noncell therapy. However, whether circulating Exos derived from TBI patients (TBI-Exos) regulate the prohealing effects of fractures remains unclear. Thus, the present study aimed to explore the biological effects of TBI-Exos on fracture healing and reveal the potential molecular mechanism. TBI-Exos were isolated by ultracentrifugation, and the enriched miR-21-5 p was identified by qRT‒PCR analysis. The beneficial effects of TBI-Exos on osteoblastic differentiation and bone remodeling were determined by a series of in vitro assays. Bioinformatics analyses were conducted to identify the potential downstream mechanisms of the regulatory effect of TBI-Exos on osteoblasts. Furthermore, the role of the potential signaling pathway of TBI-Exos in mediating the osteoblastic activity of osteoblasts was assessed. Subsequently, a murine fracture model was established, and the effect of TBI-Exos on bone modeling was demonstrated in vivo. TBI-Exos can be internalized by osteoblasts, and in vitro, suppression of SMAD7 promoted osteogenic differentiation, whereas knockdown of miR-21-5 p in TBI-Exos strongly inhibited this bone-beneficial effect. Similarly, our results confirmed that preinjection of TBI-Exos led to enhanced bone formation, whereas knockdown of exosomal miR-21-5 p substantially impaired this bone-beneficial effect in vivo.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼