RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        SUBMANIFOLD OF (κ, μ)- CONTACT METRIC MANIFOLD AS A RICCI SOLITON

        H. G. NAGARAJA,DIPANSHA KUMARI,P. S. K. Reddy 장전수학회 2021 Proceedings of the Jangjeon mathematical society Vol.24 No.1

        We study invariant and anti-invariant submanifolds of (κ, μ)- contact metric manifolds as Ricci solitons and show that the nature of Ricci soliton depends on the value of k. We also show that, in the sub- manifold as Ricci soliton, structure tensor Φ anti commutes with the Ricci operator Q.

      • SCOPUSKCI등재

        Combination of Classifiers Decisions for Multilingual Speaker Identification

        Nagaraja, B.G.,Jayanna, H.S. Korea Information Processing Society 2017 Journal of information processing systems Vol.13 No.4

        State-of-the-art speaker recognition systems may work better for the English language. However, if the same system is used for recognizing those who speak different languages, the systems may yield a poor performance. In this work, the decisions of a Gaussian mixture model-universal background model (GMM-UBM) and a learning vector quantization (LVQ) are combined to improve the recognition performance of a multilingual speaker identification system. The difference between these classifiers is in their modeling techniques. The former one is based on probabilistic approach and the latter one is based on the fine-tuning of neurons. Since the approaches are different, each modeling technique identifies different sets of speakers for the same database set. Therefore, the decisions of the classifiers may be used to improve the performance. In this study, multitaper mel-frequency cepstral coefficients (MFCCs) are used as the features and the monolingual and cross-lingual speaker identification studies are conducted using NIST-2003 and our own database. The experimental results show that the combined system improves the performance by nearly 10% compared with that of the individual classifier.

      • KCI등재

        Combination of Classifiers Decisions for Multilingual Speaker Identification

        ( B. G. Nagaraja ),( H. S. Jayanna ) 한국정보처리학회 2017 Journal of information processing systems Vol.13 No.4

        State-of-the-art speaker recognition systems may work better for the English language. However, if the same system is used for recognizing those who speak different languages, the systems may yield a poor performance. In this work, the decisions of a Gaussian mixture model-universal background model (GMMUBM) and a learning vector quantization (LVQ) are combined to improve the recognition performance of a multilingual speaker identification system. The difference between these classifiers is in their modeling techniques. The former one is based on probabilistic approach and the latter one is based on the fine-tuning of neurons. Since the approaches are different, each modeling technique identifies different sets of speakers for the same database set. Therefore, the decisions of the classifiers may be used to improve the performance. In this study, multitaper mel-frequency cepstral coefficients (MFCCs) are used as the features and the monolingual and cross-lingual speaker identification studies are conducted using NIST-2003 and our own database. The experimental results show that the combined system improves the performance by nearly 10% compared with that of the individual classifier.

      • Tailoring and exploring the basicity of magnesium oxide nanostructures in ionic liquids for Claisen-Schmidt condensation reaction

        Jadhav, Arvind H.,Prasad, Divya,Jadhav, Harsharaj S.,Nagaraja, Bhari Mallanna,Seo, Jeong Gil Elsevier 2018 ENERGY Vol.160 No.-

        <P><B>Abstract</B></P> <P>Solid basic catalysts are extremely useful for green catalytic processes because of their high activity, easy separation, and minimal corrosion. Herein, we report the development and effect of the basicity of five various MgO nanostructures developed by microwave (MW) irradiation in different ionic liquids (ILs) on the Claisen-Schmidt Condensation Reaction. The growth of the shape-controlled MgO nanostructures in the presence of the synergetic effect of the ILs with the MW irradiation developed various basic sites on the surface of the MgO nanocrystals. Due to the synergetic effect (formation of hydrogen bonding and π-π interactions between the ILs and the MgO precursor in the presence of MW irradiation) produced active basic sites in the final nanostructure. The TPD & XPS results show that the synergetic effect strongly altered the percentages of high, low, and moderate basic sites of the catalysts. To determine their catalytic activity based on the obtained different basicity in the MgO nanostructures, prepared all nano structures were tested in the reaction. The altered basicity of the MgO catalysts strongly affected on reaction results and demonstrated better activity than pure MgO. Particularly, hexagonal MgO nanostructures with exposed crystal facets (110) and (111) having high surface area and basicity showed an outstanding activity. In addition, effect or reaction parameters such as temperature, catalyst amount, solvent effect, and reaction time were determine and obtained optimized reaction condition for outstanding results. To determine the diversity of prepared MgO nanostructures, various substituted chalcones were prepared in optimized reaction condition in good to efficient yield. Recyclability of prepared catalyst was also determined up-to 6 cycles and physicochemical changes before and after recyclability test was determined. The proper correlation of obtained basicity & basic sites with the catalytic activity was established with this protocol.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Shape controlled MgO structures were used as catalysts having altered basicity. </LI> <LI> Altered basicity developed by ILs and MW irradiation while structure development. </LI> <LI> Exposed high surface with (110) (111) facets of MgO showed outstanding activity. </LI> <LI> Catalysts can be recycled without disturbing morphology and catalytic activity. </LI> <LI> New green approach for the alteration of basic sites in heterogeneous base catalysts. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Influence of Sn Doping on Photoluminescence and Photoelectrochemical Properties of ZnO Nanorod Arrays

        A. Santhosh Kumar,N. M. Huang,H. S. Nagaraja 대한금속·재료학회 2014 ELECTRONIC MATERIALS LETTERS Vol.10 No.4

        Herein, the nanostructured Sn containing ZnO is directly synthesized on the surface of substrate by modified sol gel approach under low-temperature condition. The samples are characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman-scattering, photoluminescence (PL) and photoelectrochemical analyses. The SEM micrographs show that the undoped and 1 at. % Sn doped films are composed of nanorods and the concentration of 2 at. % Sn doping hinders the rod-like structure’s growth and modulates into granular nature. The investigations of XRD reveal that the synthesized undoped and Sn doped ZnO nanorods possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (002) direction of preference. The Raman spectra demonstrate that the vibrational mode of E1(LO), which is very weak in undoped and 1at. % Sn doped ZnO, is strongly enhanced with 2 at. % Sn doping into ZnO lattice. PL spectra show that strong UV emission in pure and 1 at. % Sn doped ZnO, while there is dominant green emission in 2 at. % Sn doped ZnO. Moreover, all the samples are photo electrochemically active and exhibit the highest photocurrent of 28 μA for the 1 at. % Sn doped ZnO nanorod arrays in 0.2M Na2SO4 electrolyte, on light irradiation. Time dependent photoresponse tests are carried out by measuring the photocurrent under chopped light irradiation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼