RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        In-pile tritium release behavior and the post-irradiation experiments of Li4SiO4 fabricated by melting process

        Zhao Linjie,Yang Mao,Xiao Chengjian,Gong Yu,Ran Guangming,Chen Xiaojun,Li Jiamao,Yue Lei,Chen Chao,Hou Jingwei,Wang Heyi,Long Xinggui,Peng Shuming 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.1

        Understanding the tritium release and retention behavior of candidate tritium breeder materials is crucial for breeder blanket design. Recently, a melt spraying process was developed to prepare Li4SiO4 pebbles, which were subsequently subjected to the in-pile tritium production and extraction platform in China Mianyang Research Reactor (CMRR) to investigate their in-situ tritium release behavior and irradiation performance. The results demonstrate that HT is the main tritium release form, and adding hydrogen to the purge gas reduces tritium retention while increasing the HT percent in the purge gas. Post-irradiation experiments reveal that the irradiated pebbles darken in color and their grains swell, but the mechanical properties remain largely unchanged. It is concluded that the tritium residence time of Li4SiO4 made by melt spraying method at 467 ◦C is approximately 23.34 h. High-density Li4SiO4 pebbles exhibit tritium release at relatively low temperatures (<600 ◦C) that is mainly controlled by bulk diffusion. The diffusion coefficient at 525 ◦C and 550 ◦C is 1.19 × 10 11 cm2/s and 5.34 × 10 11 cm2/s, respectively, with corresponding tritium residence times of 21.3 hours and 4.7 hours.

      • KCI등재

        Reconfigurable Optical Delay Lines Based on Single Folded Waveguides

        Linjie Zhou,Tong Ye,Jianping Chen 한국물리학회 2011 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.58 No.42

        We propose a novel single folded waveguide-based reconfigurable optical delay line. Due to waveguide self-coupling, light travels back and forth along the waveguide, forming resonances. With two phase shifters embedded in the waveguide, resonance modes and coupling can be conveniently controlled. Under proper phases, the delay line can be reconfigured to perform various types of delays. In particular, when the resonance input and mutual coupling strengths are properly matched, the group delay dispersion can be significantly reduced, favoring an optical signal delay with low distortion. The group delay can be continuously tuned at low tuning power by changing the phases.

      • KCI등재

        Exercise-induced FNDC5/irisin protects nucleus pulposus cells against senescence and apoptosis by activating autophagy

        Zhou Wenxian,Shi Yifeng,Wang Hui,Chen Linjie,Yu Caiyu,Zhang Xufei,Yang Lei,Zhang Xiaolei,Wu Aimin 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), and excessive senescence and apoptosis of nucleus pulposus (NP) cells are major pathological changes in IVDD. Physical exercise could effectively delay the process of intervertebral disc degeneration; however, its mechanism is still largely unknown. Irisin is an exercise-induced myokine released upon cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), and its levels increase after physical exercise. Here, we show that after physical exercise, FNDC5/irisin levels increase in the circulation and NP, senescence and apoptosis are reduced, autophagy is activated in NP tissue, and the progression of IVDD is delayed. Conversely, after knocking out FNDC5, the benefits of physical exercise are compromised. Moreover, the overexpression of FNDC5 in NP tissue effectively alleviated the degeneration of the intervertebral disc (IVD) in rats. By showing that FNDC5/irisin is an important mediator of the beneficial effects of physical exercise in the IVDD model, the study proposes FNDC5/irisin as a novel agent capable of activating autophagy and protecting NP from senescence and apoptosis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼