RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation

        Salama, El-Sayed,Kurade, Mayur B.,Abou-Shanab, Reda A.I.,El-Dalatony, Marwa M.,Yang, Il-Seung,Min, Booki,Jeon, Byong-Hun Elsevier 2017 RENEWABLE & SUSTAINABLE ENERGY REVIEWS Vol.79 No.-

        <P><B>Abstract</B></P> <P>Microalgae are a potential source of sustainable biomass feedstock for biofuel generation, and can proliferate under versatile environmental conditions. Mass cultivation of microalgae is the most overpriced and technically challenging step in microalgal biofuel generation. Wastewater is an available source of the water plus nutrients necessary for algae cultivation. Microalgae provide a cost-effective and sustainable means of advanced (waste)water treatment with the simultaneous production of commercially valuable products. Microalgae show higher efficiency in nutrient removal than other microorganisms because the nutrients (ammonia, nitrate, phosphate, urea and trace elements) present in various wastewaters are essential for microalgal growth. Potential progress in the area of microalgal cultivation coupled with wastewater treatment in open and closed systems has led to an improvement in algal biomass production. However, significant efforts are still required for the development and optimization of a coupled system to simultaneously generate biomass and treat wastewater. In this review, the systematic description of the technologies required for the successful integration of wastewater treatment and cultivation of microalgae for biomass production toward biofuel generation was discussed. It deeply reviews the microalgae-mediated treatment of different wastewaters (including municipal, piggery/swine, industrial, and anaerobic wastewater), and highlight the wastewater characteristics suitable for microalgae cultivation. Various pretreatment methods (such as filtration, autoclaving, UV application, and dilution) needed for wastewater prior to its use for microalgae cultivation have been discussed. The selection of potential microalgae species that can grow in wastewater and generate a large amount of biomass has been considered. Discussion on microalgal cultivation systems (including raceways, photobioreactors, turf scrubbers, and hybrid systems) that use wastewater, evaluating the capital expenditures (CAPEX) and operational expenditures (OPEX) of each system was reported. In view of the limitations of recent studies, the future directions for integrated wastewater treatment and microalgae biomass production for industrial applications were suggested.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Challenges in using wastewater for microalgae cultivation and biomass production. </LI> <LI> Treatment of different wastewaters and reuse of the treated water. </LI> <LI> Recovery of valuable nutrients (N/P) and removal of organic pollutants. </LI> <LI> Application of wastewater in raceways, photobioreactors, turf scrubbers, and hybrid systems. </LI> <LI> Genetically engineered microalgae for efficient wastewater treatment. </LI> </UL> </P>

      • Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review

        Salama, El-Sayed,Hwang, Jae-Hoon,El-Dalatony, Marwa M.,Kurade, Mayur B.,Kabra, Akhil N.,Abou-Shanab, Reda A.I.,Kim, Ki-Hyun,Yang, Il-Seung,Govindwar, Sanjay P.,Kim, Sunjoon,Jeon, Byong-Hun Elsevier 2018 Bioresource technology Vol.258 No.-

        <P><B>Abstract</B></P> <P>Microalgal biomass has received much attention as feedstock for biofuel production due to its capacity to accumulate a substantial amount of biocomponents (including lipid, carbohydrate, and protein), high growth rate, and environmental benefit. However, commercial realization of microalgal biofuel is a challenge due to its low biomass production and insufficient technology for complete utilization of biomass. Recently, advanced strategies have been explored to overcome the challenges of conventional approaches and to achieve maximum possible outcomes in terms of growth. These strategies include a combination of stress factors; co-culturing with other microorganisms; and addition of salts, flue gases, and phytohormones. This review summarizes the recent progress in the application of single and combined abiotic stress conditions to stimulate microalgal growth and its biocomponents. An innovative schematic model is presented of the biomass-energy conversion pathway that proposes the transformation of all potential biocomponents of microalgae into biofuels.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Improvement of biochemical components using combined abiotic stress. </LI> <LI> Microalgae and their properties vis-à-vis biofuel production. </LI> <LI> Transformation of all potential biochemical components into biofuels. </LI> </UL> </P>

      • KCI등재

        Identification of Green Alga Chlorella vulgaris Isolated from Freshwater and Improvement Biodiesel Productivity via UV Irradiation

        ( Mohamed A. Gomaa ),( Mohamed H. Refaat ),( Tamer M. Salim ),( Abo El-khair B. El-sayed ),( Makhlouf M. Bekhit ) 한국미생물생명공학회(구 한국산업미생물학회) 2019 한국미생물·생명공학회지 Vol.47 No.3

        Chlorella vulgaris was isolated from the Nile River, Qalubia Governorate, Egypt, for possible use in biodiesel production. BG-II nutrient growth media was used for isolation and laboratory growth. Identification was performed via 18S rRNA gene amplification, followed by sequencing. The alga was exposed to UVC (254 nm) for 15, 30, and 45 s to improve dry weight accumulation and to increase the oil production. Daily measurements of dry weight (g·l<sup>-1</sup>) were performed; oil content and volumetric lipid productivity were also determined. UV-C exposure led to an increase in the volumetric lipid productivity by 27, 27.3, and 32.4 mg·l<sup>-1</sup>·d<sup>-1</sup> with 15, 30, and 45 s, respectively, as compared with the control, which resulted in 18 mg·l<sup>-1</sup>·d<sup>-1</sup>. Of the examined mutants, the one with the highest productivity was re-irradiated by UV-C (254 nm) for 15, 30, 45, and 60 s. For 15 s of exposure time, the oil content increased to 34%, while it was 31% at 30 s; further, it decreased to 22% at 45 and 60 s exposures. The fatty acid methyl ester profile was 82.22% in the first mutant at 45 s, compared with the wild strain that contained a total of 66.01% of FAs. Furthermore, the highest levels of polyunsaturated fatty acid methyl ester were observed in the mutant exposed for 45 s, and it reached 11.41%, which reduced the cetane number to 71.3.

      • KCI등재

        Physiological and molecular study on the anti-obesity effects of pineapple (Ananas comosus) juice in male Wistar rat

        Samir A. El-Shazly,Mohamed M. Ahmed,Mohammad S. AL-Harbi,Mohamed E. Alkafafy,Hanan B. El-Sawy,Sayed A. M. Amer 한국식품과학회 2018 Food Science and Biotechnology Vol.27 No.5

        The present study was performed to assess antiobesity effects of raw pineapple juice in high fat diet (HFD)-induced fatness. Based on food type, rats were divided into normal diet and HFD groups. When animals of HFD group become obese, they were given pineapple juice along with either HFD or normal diet. Blood biochemistry, liver and muscle gene expressions were analyzed. HFD induced significant elevations in body weight, body mass index (BMI), body fat accumulation, liver fat deposition and blood lipids while juice restored these parameters near to their normal values. Juice significantly decreased serum insulin and leptin while adiponectin was increased. Juice administration downregulated the increment of FAS and SERBP-1c mRNA expression in liver and upregulated HSL and GLUT-2 expressions. The muscular lipolytic CPT-1 expression was upregulted by juice treatment. Pineapple juice, therefore, may possibly be used as anti-obesity candidate where it decreased lipogenesis and increased lipolysis.

      • KCI등재

        Removal of Reactive Blue 19 dye from Aqueous Solution Using Natural and Modified Orange Peel

        Sohair A. Sayed Ahmed,Laila B. Khalil,Thoria El-Nabarawy 한국탄소학회 2012 Carbon Letters Vol.13 No.4

        Orange peel (OP) exhibits a sorption capacity towards anionic dyes such as reactive blue 19 (RB19). Cetyltrimethylammonium bromide (CTAB) as a cationic surfactant was used to modify the surface nature of OP to enhance its adsorption capacity for anionic dyes from an aqueous solution. Four adsorbents were investigated: the OP, sodium hydroxide-treated OP (SOP), CTAB-modified OP and CTAB-modified SOP. The physical and chemical properties of these sorbents were determined using nitrogen adsorption at 77 K and by scanning electron microscope and Fourier transform infrared spectroscopy techniques. The adsorption of the RB19 dye was assessed with these sorbents at different solution pH levels and temperatures. The effect of the contact time was considered to determine the order and rate constants of the adsorption process. The adsorption data were analyzed considering the Freundlich, Langmuir, Elovich and Tempkin models. The adsorption of RB19 by the assessed sorbents is of the chemisorption type following pseudo-first-order kinetics. CTAB modification brought about a significant increase in RB19 adsorption, which was ascribed to the grafting of the sorbent with a cationic surfactant.

      • SCOPUSKCI등재

        Identification of Green Alga Chlorella vulgaris Isolated from Freshwater and Improvement Biodiesel Productivity via UV Irradiation

        Gomaa, Mohamed A.,Refaat, Mohamed H.,Salim, Tamer M.,El-Sayed, Abo El-Khair B.,Bekhit, Makhlouf M. The Korean Society for Microbiology and Biotechnol 2019 한국미생물·생명공학회지 Vol.47 No.3

        Chlorella vulgaris was isolated from the Nile River, Qalubia Governorate, Egypt, for possible use in biodiesel production. BG-II nutrient growth media was used for isolation and laboratory growth. Identification was performed via 18S rRNA gene amplification, followed by sequencing. The alga was exposed to UV-C (254 nm) for 15, 30, and 45 s to improve dry weight accumulation and to increase the oil production. Daily measurements of dry weight ($g{\cdot}l^{-1}$) were performed; oil content and volumetric lipid productivity were also determined. UV-C exposure led to an increase in the volumetric lipid productivity by 27, 27.3, and $32.4mg{\cdot}l^{-1}{\cdot}d^{-1}$ with 15, 30, and 45 s, respectively, as compared with the control, which resulted in $18mg{\cdot}l^{-1}{\cdot}d^{-1}$. Of the examined mutants, the one with the highest productivity was re-irradiated by UV-C (254 nm) for 15, 30, 45, and 60 s. For 15 s of exposure time, the oil content increased to 34%, while it was 31% at 30 s; further, it decreased to 22% at 45 and 60 s exposures. The fatty acid methyl ester profile was 82.22% in the first mutant at 45 s, compared with the wild strain that contained a total of 66.01% of FAs. Furthermore, the highest levels of polyunsaturated fatty acid methyl ester were observed in the mutant exposed for 45 s, and it reached 11.41%, which reduced the cetane number to 71.3.

      • KCI등재후보

        The temperature dependent electrical transport in biphenyl derivatives

        M.M. Sallam,B.A. El-Sayed,A.A. Abdel-Shafi 한국물리학회 2006 Current Applied Physics Vol.6 No.1

        The d.c. electrical conductivity measurements as a function of temperature of 4,4-dibromobiphenyl (DBrBP), 4,4-dichlorobiphe-nyl (DClBP) and 4,4-dimethoxybiphenyl (DMOBP) compounds have been carried out. The eects of conformational change withinskeleton of these compounds upon optical or thermal excitation (S1 S0 para substituents on the electrical conductivityhave been discussed. The conduction processes were interpreted in the light of their molecular spectroscopic data of the infrared,ultraviolet and emission spectra as a hopping processes. The semiconducting properties of the investigated compounds were arisingfrom electron-delocalization via intramolecular interaction ofp-electrons of (C@ C) bonds and electron-donating groups inparaincreases the possibility of electron-delocalization and the interaction ofp-electron system..

      • Quercetin Confers Tumoricidal Activity Through Multipathway Mechanisms in A N-Methylnitrosourea Rat Model of Colon Cancer

        Ahmed, Hanaa H,Aglan, Hadeer A,Zaazaa, Asmaa M,Shalby, Aziza B,Toumy, Sayed A El Asian Pacific Journal of Cancer Prevention 2016 Asian Pacific journal of cancer prevention Vol.17 No.11

        Objective: This research was conducted to explore mechanisms behind the potency of quercetin in inhibiting colon cancer induced in an experimental model. Materials and Methods: Forty adult male rats of Wistar strain were distributed into 4 groups; a negative control group, a colon cancer bearing group, a quercetin-treated group and a 5-fluorouracil (5-FU)-treated group. Serum TAG72 and GAL3 levels were quantified by ELISA. Colonic Wnt5a and Axin-1 gene expression was estimated by PCR. In addition, colonic tissues were subjected to immunohistochemical examination of Bax expression and histological investigation of histopathological alterations. Results: Quercetin elicited significant reduction in serum TAG72 and GAL3 levels, in addition to significant suppression of colonic Wnt5a gene expression and amplification of colonic Axin-1 gene expression. Also, it caused moderate positive reaction for Bax in mucosal epithelium. Conclusion: The present research provides experimental evidence about the activity of quercetin in the colon cancer of rats. Inhibitory effects on cancer development might be ascribable to regulatory action on Wnt signaling and induction of apoptosis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼