http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
폴리에틸렌 미세플라스틱의 임신 마우스 위내 투여 및 기도 점적에 따른 신생자 간독성 평가
김근우(GeunWoo Kim),김창열(ChangYul Kim) 한국환경보건학회 2022 한국환경보건학회지 Vol.48 No.2
Background: Current research suggests that humans are exposed to microplastics through consumption of foods and beverages, the airway route, and a variety of other means. Objectives: We evaluated oxidative stress and inflammation from polyethylene microplastics (PE-MPs) in the neonatal liver through intragastric administration or intratracheal instillation in pregnant mice. Methods: PE-MPs were administered from gestational day 9 to postnatal day 7. The intragastric administration group (0.01 mg/mouse/day or 0.1 mg/mouse/day) and intratracheal instillation group (6 μg/mouse/day or 60 μg/mouse/day) of PE-MPs were administered. After sacrifice, the oxidative stress and inflammation of the neonatal livers were measured. Results: As a result of the oxidative stress caused by PE-MPs in the neonatal livers, glutathione peroxidase decreased in a concentration-dependent manner in the intragastric administration group compared to the control group and intratracheal instillation decreased in high concentration PE-MPs. The catalase level increased at high concentrations of intragastric administration and intratracheal instillation. To confirm the level of inflammation caused by PE-MPs, monocyte chemoattractant protein-1 and tumor necrosis factor- alpha were increased compared to the control group except for intratracheal intilation-high concentration PE- MPs. The C-reactive protein level was decreased by intragastric administration compared to the control group and intratracheal instillation was increased compared to the control group. Conclusions: Despite the difficulty in comparing the toxic intensity between intragastric administration and intratracheal instillation of PE-MPs, our study revealed that oxidative stress and inflammation were induced in the neonatal liver. However, it is necessary to evaluate the toxic effects of microplastics on various organs as well. Overall, the present study indicates that the evaluation of toxic effects of long-term microplastic exposure, potential of microplastic toxicity on next-generation offspring and toxicity mechanism in human should be considered for further investigations.
실험동물 랫드를 이용한 미세먼지 기도노출에 따른 호흡기계 독성에 대한 마늘의 예방효과 탐색
이윤범(YoonBum Lee),김근우(GeunWoo Kim),송영민(YoungMin Song),한영훈(YoungHoon Han),하창수(ChangSu Ha),이지선(JiSun Lee),김민희(MinHee Kim),손혜영(HyeYoung Son),이기용(GiYong Lee),허 용(Yong Heo),김창열(ChangYul Kim) 한국환경보건학회 2020 한국환경보건학회지 Vol.46 No.6
Objectives: Exposure to fine dust (PM10) could contribute to the occurrence of cardiovascular disease or respiratory abnormalities. Since garlic is known to possess an anti-oxidative stress effect, the present study was performed to evaluate the effect of garlic intake on fine dust-mediated pulmonary toxicity. Methods: Rats were intratracheally instilled with fine dust at 15 mg/kg body weight (BW)/day for five days following five-day intragastric intubation of garlic at 0.7 or 1.4 g/kgBW/day, or 13.1 mg/kgBW/day S-allyl-cysteine (SAC) as a reference component in garlic. Blood and bronchoalveolar lavage fluid (BALF) were collected. Results: Deposit of fine dust was visually and histopathologically observed in the lungs. Body weight gain during the instillation period was significantly lowered in all the groups instilled with fine dust. Neutrophil numbers in blood were significantly elevated in the fine dust alone group, but this alteration was diminished in the groups administered with garlic. Levels of serum glutathione were lower in the rats instilled with fine dust alone, and this decrease in the glutathione level seems dose-dependently compensated among the groups administered with garlic. Similar findings were observed in the BALF with statistical significance. Typical pulmonary histopathological observation related with inflammation was demonstrated in the lungs of the rats exposed to fine dust alone, whereas such histopathologic findings were not improved in the groups administered with garlic. Conclusion: The present study suggests that garlic intake could alleviate fine dust-mediated pulmonary or systemic toxicities. Further investigation is necessary to delineate the mechanism of garlic-mediated effects on pulmonary function.