http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
동시 질산화-탈질(SND) 반응을 적용한 MBR 반응조에서 질소 및 인 제거 특성
전동걸(Dong Jie Tian),임현숙(Hyun Suk Lim),안찬현(Chan Hyun An),이봉규(Bong Gyu Lee),전항배(Hang Bae Jun),박찬일(Chan Il Park) 大韓環境工學會 2013 대한환경공학회지 Vol.35 No.10
동시 질산화 탈질은 미세 용존 산소하에 한 반응조내에서 일어난다. 따라서, 본 연구에서는 인 방출을 위해 공기가 공급되는 MBR 전단에 혐기성 존을 만들어주었으며, 높은 DO 농도에서 탈질효율을 향상시켜 주기 위해서는 MBR 내에 배플을 설치하여 무산소 존이 이루어지게 하였다. 그리고 인 제거를 위한 테스트는 MBR 전단의 혐기성 반응조에 알럼 응집제를투입하여 수행하였다. 질소 제거를 위한 SND의 최적 DO 농도 도출은 MBR 내 DO 농도를 2.0, 1.5, 1.0, 0.75 mg/L의 다양한조건에서의 운전을 통해 수행하였다. 심지어 높은 알칼리성 하수라 알럼 응집제를 투입하였을 때 알칼리 용액 첨가 없이도 pH 는 7.0~8.0로 유지되었다. TCODcr와 NH₄+-N의 제거 효율은 모든 DO 농도에서 90% 이상이었다. DO 농도 2.0, 1.5, 1.0, 0.75mg/L에서의 TN 제거효율은 각각 50, 51, 54, 66%이었다. DO 농도 0.75 mg/L 조건에서 알럼을 첨가한 결과 TN 제거효율은 54%로 감소하였다. 혐기성 반응조에 알럼을 투입한 결과 TP 제거효율은 29%에서 95%로 향상되었다. 그리고 알럼 투입 후 분리막모듈의 화학적 세정 주기는 15~20일부터 40~50일으로 늘어났다. Simultaneous nitrification and denitrification (SND) occurs concurrently in the same reactor under micro dissolved oxygen (DO) conditions. Anaerobic zone was applied for phosphorus release prior to an aerated membrane bio-reactor (MBR), and anoxic zone was installed by placing a baffle in the MBR for enhancing denitrification even in high DO concentration in the MBR. Phosphorus removal was tested by alum coagulation in the anaerobic reactor preceding to MBR. DO concentration were 2.0,1.5, 1.0, 0.75 mg/L in the MBR at different operating stages for finding optimum DO concentration in MBR for nitrogen removal by SND. pH was maintained at 7.0~8.0 without addition of alkaline solution even with alum addition due to high alkalinity in the raw sewage. Both TCODcr and NH₄+-N removal efficiency were over 90% at all DO concentration. TN removal efficiencies were 50, 51, 54, 66% at DO concentration of 2.0, 1.5, 1.0, 0.75 mg/L, respectively. At DO concentration of 0.75 mg/L with addition of alum, TN removal efficiency decreased to 54%. TP removal efficiency increased from 29% to 95% by adding alum to anaerobic reactor. The period of chemical backwashing of the membrane module increased from 15~20 days to 40~50 days after addition of alum.
Investigation on the Use of GPGPU for Fast Sparse Matrix Factorization
Tian, Ye,Zhou, Bin,Zhang, YuTong,Chan, Ka Wing The Korean Institute of Electrical Engineers 2011 The Journal of International Council on Electrical Vol.1 No.1
Solution for network equations is frequently encountered by power system researchers. With the increasingly larger system size, time consumed network solution is becoming a dominant factor in the overall time cost. One distinct and important feature of the network admittance matrix is that it is highly sparse, which need to be addressed by specialized computation techniques. One technique to accelerate matrix factorization is parallel computation, with which data processing can be divided into different tasks and implemented simultaneously. However, up to now, efficiency of parallel computation algorithm implemented on multi-processor systems is adversely affected by the data communication latency between processors. In this paper, by taking advantage of the parallel computing power of the contemporary Graphic Processing Units (GPU) and designs of sparse technique for matrix factorization implemented on GPU, proposed algorithms are implemented and evaluated on the Computer Unified Device Architecture (CUDA) interface of the NVIDIA GPU. Preliminary results show significant improvement of speed of LU factorization.
Fabrication of Gas-permeable Die Materials Having Orthogonally Arrayed Pore Channels
Chan Tien-Yin,Lin Shun-Tian,Chang Hua-Jun,Chen Chia-Liang 한국분말야금학회 2006 한국분말야금학회 학술대회논문집 Vol.2006 No.1
Gas-permeable metal die materials are developed using tool steel powder, packed in a mold having the insertion of orthogonally arrayed polymer wires. Linear gas-permeable channels in orthogonal array are thus developed by the burning out of the polymer wires, which yield a microstructure with wear resistance value and air permeability much larger than those of the conventional gas-permeable die material.
Tian, Xue,Song, Hae Seong,Cho, Young Mi,Park, Bongkyun,Song, Yoon-Jae,Jang, Sunphil,Kang, Se Chan Williams & Wilkins Co 2017 Medicine Vol.96 No.30
<P><B>Abstract</B></P><P>To demonstrate the mechanisms of the curative effect of <I>Saussurea lappa</I> ethanol extract (SLE) against prostate cancer, we evaluated the effect of SLE on the induction of apoptosis and autophagy and investigated whether SLE-induced autophagy exerts a pro-survival or pro-apoptotic effect in lymph node carcinoma of the prostate (LNCaP) prostate cancer cells. SLE was prepared using 100% ethanol and added to LNCaP cells for 24 hours. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell apoptosis was evaluated by Tali assay. The expression of apoptosis-related mRNA and proteins was analyzed by quantitative real-time RT-PCR and western blotting. SLE treatment decreased the viability of LNCaP cells and increased Bax expression while suppressing the expression of pro-caspases-8/9/3, PARP, Bid, and Bcl-2, thereby inducing apoptosis in LNCaP cells. Cell proliferation related proteins, including p-Akt, androgen receptor, and prostate-specific antigen, were suppressed by SLE treatment. SLE also induced autophagy in LNCaP cells, and inhibition of autophagy enhanced the apoptosis induced by SLE treatment. These results suggest that SLE exerts anticancer effects through the induction of both cellular apoptosis and autophagy, and apoptotic cell death can be facilitated by blocking autophagy in SLE-treated LNCaP cells. Therefore, SLE might be a potential anticancer agent for the treatment of prostate cancer.</P>
Cross-sectional analysis of arbitrary sections allowing for residual stresses
Tian-Ji Li,Siu-Lai Chan,Si-Wei Liu 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.18 No.4
The method of cross-section analysis for different sections in a structural frame has been widely investigated since the 1960s for determination of sectional capacities of beam-columns. Many handcalculated equations and design graphs were proposed for the specific shape and type of sections in precomputer age decades ago. In design of many practical sections, these equations may be uneconomical and inapplicable for sections with irregular shapes, leading to the high construction cost or inadequate safety. This paper not only proposes a versatile numerical procedure for sectional analysis of beam-columns, but also suggests a method to account for residual stress and geometric imperfections separately and the approach is applied to design of high strength steels requiring axial force-moment interaction for advanced analysis or direct analysis. A cross-section analysis technique that provides interaction curves of arbitrary welded sections with consideration of the effects of residual stress by meshing the entire section into small triangular fibers is formulated. In this study, two doubly symmetric sections (box-section and H-section) fabricated by high-strength steel is utilized to validate the accuracy and efficiency of the proposed method against a hand-calculation procedure. The effects of residual stress are mostly not considered explicitly in previous works and they are considered in an explicit manner in this paper which further discusses the basis of the yield surface theory for design of structures made of high strength steels.
An Efficient Design Support System based on Automatic Rule Checking and Case-based Reasoning
Pin-Chan Lee,Tzu-Ping Lo,Ming-Yang Tian,Danbing Long 대한토목학회 2019 KSCE Journal of Civil Engineering Vol.23 No.5
A well building design support system can not only meet the rules but also automatically recommend the appropriate alternatives for designers, but most modifications now are conducted in the manual way. Although the method of automatic rule checking can effectively identify the compliance of rules in Building Information Modeling (BIM) models, recommendation supports are still lacked in applications. This paper aims to propose a design support system, using automatic rule checking to identify the compliance of rules and adopting case-based reasoning to provide recommendations via ontology and semantics. The AHP-TOPSIS (Analytic hierarchy process-Technique for Order Preference by Similarity to an Ideal Solution) method is used to give reliable recommendations rank. A real case is adopted as an illustrative example. Results show that the proposed system can increase the design efficiency in both design checking and modifying. Similar applications can be extended to other fields and rules.