RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Integrative analysis of multi-dimensional imaging genomics data for Alzheimer's disease prediction

        Zhang, Ziming,Huang, Heng,Shen, Dinggang Frontiers Media S.A. 2014 FRONTIERS IN AGING NEUROSCIENCE Vol.6 No.-

        <P>In this paper, we explore the effects of integrating multi-dimensional imaging genomics data for Alzheimer's disease (AD) prediction using machine learning approaches. Precisely, we compare our three recent proposed feature selection methods [i.e., multiple kernel learning (MKL), high-order graph matching based feature selection (HGM-FS), sparse multimodal learning (SMML)] using four widely-used modalities [i.e., magnetic resonance imaging (MRI), positron emission tomography (PET), cerebrospinal fluid (CSF), and genetic modality single-nucleotide polymorphism (SNP)]. This study demonstrates the performance of each method using these modalities individually or integratively, and may be valuable to clinical tests in practice. Our experimental results suggest that for AD prediction, in general, (1) in terms of accuracy, PET is the best modality; (2) Even though the discriminant power of genetic SNP features is weak, adding this modality to other modalities does help improve the classification accuracy; (3) HGM-FS works best among the three feature selection methods; (4) Some of the selected features are shared by all the feature selection methods, which may have high correlation with the disease. Using all the modalities on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the best accuracies, described as (mean ± standard deviation)%, among the three methods are (76.2 ± 11.3)% for AD vs. MCI, (94.8 ± 7.3)% for AD vs. HC, (76.5 ± 11.1)% for MCI vs. HC, and (71.0 ± 8.4)% for AD vs. MCI vs. HC, respectively.</P>

      • KCI등재

        Chloride diffusion in concrete associated with single, dual and multi cation types

        Zijian Song,Linhua Jiang,Ziming Zhang 사단법인 한국계산역학회 2016 Computers and Concrete, An International Journal Vol.17 No.1

        Currently, most of the investigations on chloride diffusion were based on the experiments and simulations concerning single cation type chlorides. Chloride diffusion associated with dual or multi cation types was rarely studied. In this paper, several groups of diffusion experiments are conducted using chloride solutions containing single, dual and multi cation types. A multi-ionic model is also proposed to simulate the chloride diffusion behavior in the experimental tests. The MATLAB software is used to numerically solve the nonlinear PDEs in the multi-ionic model. The experimental and simulated results show that the chloride diffusion behavior associated with different cation types is significantly different. When the single cation type chlorides are adopted, it is found that the bound rates of chloride ions combined with divalent cations are greater than those combined with monovalent cations. When the dual/multi cation type chlorides are adopted, the chloride bound rates increase with the Ca2+/Mg2+ percentage in the source solutions. This evidence indicates that the divalent cations would markedly enhance the chloride binding capacity and reduce the chloride diffusivity. Moreover, on the basis of the analysis, it is also found that the complicated cation types in source solutions are beneficial to reducing the chloride diffusivity.

      • KCI등재

        Deployment simulation of membrane structures based on elastic-plastic behavior parameterization of the crease

        Youqing Shen,Jing Zhang,Hongwei Guo,Rongqiang Liu,Ziming Kou 대한기계학회 2021 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.35 No.5

        Aiming at the problem that the membrane structure is prone to creases in the process of folding and compaction, a proxy model is used to replace the creases to introduce initial defects for the folded membrane to realize the research of the deployment simulation of the membrane. Based on the finite-element method, the Z-folding and deploying process of the membrane is simulated and the elastic-plastic behavior of the crease is parameterized. The ABAQUS connector is used to replace the crease area of the membrane to simulate the characteristics of the crease and its effectiveness is verified. The deployment of Miura-ori membrane is simulated to explore the influence of force driving and constant-speed driving on the deploying process and deployment results of the membrane. In view of the self-contact phenomenon in the membrane deploying process when driven at a constant-speed, referring to the motion trajectory of the membrane loading corner of the force drive, a step-speed driving method is proposed. The research results show that using a step-speed to drive the deployment of folded membrane can reduce the curvature of the membrane surface, solve the problem of membrane self-contact, and eliminate the phenomenon of stress concentration of membrane surface. In addition, compared with other driving methods, the step-speed driving method has a significant advantage in improving the stability of the deploying process of a membrane.

      • KCI등재

        RBPJ contributes to acquired docetaxel resistance in prostate cancer cells

        Li Xue,Zhenlong Wang,Hecheng Li,Zhaolun Li,Qi Chen,Peng Zhang,Haiwen Chen,Ziming Wang,Tie Chong,T. Chong 대한독성 유전단백체 학회 2017 Molecular & cellular toxicology Vol.13 No.3

        Our previous work has shown that depletion of recombination signal-binding protein J (RBPJ) results in reduced cell growth in prostate cancer cells. In this study, we aimed to investigate the function of RBPJ in the chemoresistance of prostate cancer. The expression of RBPJ was quantified in docetaxel-resistant and parental prostate cancer cells. Loss- and gainof- function experiments were conducted to explore the regulatory role of RBPJ in prostate cancer sensitivity to docetaxel. The pro-apoptotic effect of RBPJ silencing was checked in docetaxel-resistant prostate cancer cells. We found that docetaxel-resistant PC3-DR and DU145- DR cells expressed 3-5-fold high levels of RBPJ than parental PC3 and DU145 cells. Short hairpin RNAmediated knockdown of RBPJ inhibited cell proliferation and colony formation and reversed docetaxel resistance in docetaxel-resistant prostate cancer cells. In contrast, overexpression of RBPJ promoted cell growth, colony formation, and docetaxel resistance in parental prostate cancer cells. Downregulation of RBPJ induced apoptosis in docetaxel-resistant cells, which was accompanied by enhanced cleavage of caspase-3. In addition, RBPJ silencing or overexpression markedly modulated the expression of the Bcl-2 family members including Bcl-2, Bcl-xL, Mcl-1, Bax, and Bak. Altogether, RBPJ contributes to acquisition of docetaxel resistance in prostate cancer cells and may thus represent a potential target for overcoming chemotherapeutic resistance in this malignancy.

      • A novel small-molecule binds to the influenza A virus RNA promoter and inhibits viral replication

        Lee, Mi-Kyung,Bottini, Angel,Kim, Meehyein,Bardaro, Michael F.,Zhang, Ziming,Pellecchia, Maurizio,Choi, Byong-Seok,Varani, Gabriele The Royal Society of Chemistry 2014 Chemical communications Vol.50 No.3

        <P>Through screening by NMR spectroscopy, we discovered a novel scaffold (DPQ: 6,7-dimethoxy-2-(1-piperazinyl)-4-quinazolinamine) that binds specifically to the influenza A virus RNA promoter. The solution structure of the RNA–DPQ complex reported here demonstrates that the internal loop is the binding site of DPQ. The scaffold exhibits antiviral activity against influenza viruses.</P> <P>Graphic Abstract</P><P>A novel scaffold (DPQ: 6,7-dimethoxy-2-(1-piperazinyl)-4-quinazolinamine) exhibiting anti-influenza cellular activity identified by NMR screening binds to the internal loop of the influenza A virus RNA promoter. <IMG SRC='http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/image/GA?id=c3cc46973e'> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼