RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers

        Jian Gao,Yutai Lun,Yadi Hu,Zijian You,Xiaoyao Tan,Shaobin Wang,Jaka Sunarso,Shaomin Liu 한국공업화학회 2017 Journal of Industrial and Engineering Chemistry Vol.53 No.-

        Oxygen-selective mixed ionic-electronic conducting (MIEC) ceramic membrane technology enables clean coal combustion and membrane reactor for green chemical synthesis. To be practical in these applications that involve CO2 presence, the membrane materials should have simultaneously high CO2 resistance and oxygen permeation fluxes. This work probed these properties for the perovskite oxide family of La0.6X0.4FeO3-d (X = Mg, Ca, Sr, or Ba), i.e., La0.6Mg0.4FeO3-d (LMF), La0.6Ca0.4FeO3-d (LCF), La0.6Sr0.4FeO3-d (LSF), and La0.6Ba0.4FeO3-d (LBF) in the hollow fiber membrane geometry that is highly suitable for industrial application. LCF hollow fiber displayed the best balance in CO2 resistance and oxygen permeation fluxes.

      • KCI등재후보

        Comparison study of the effect of bridge-tunnel transition on train aerodynamic performance with or without crosswind

        Lei Zhou,Tanghong Liu,Zhengwei Chen,Wenhui Li,Zijian Guo,Xuhui He,You-Wu Wang 한국풍공학회 2021 Wind and Structures, An International Journal (WAS Vol.32 No.6

        This paper studied the case of high-speed train running from flat ground to bridges and into/out of tunnels, with or without crosswind based on the Computational Fluid Dynamics (CFD) method. First, the flow structure was analyzed to explain the influence mechanisms of different infrastructures on the aerodynamic characteristics of the train. Then, the evolution of aerodynamic forces of the train during the entire process was analyzed and compared. Additionally, the pressure variation on the train body and the tunnel wall was examined in detail. The results showed that the pressure coefficient and the flow structure on both sides of the high-speed train were symmetrical for no crosswind case. By contrast, under crosswind, there was a tremendous and immediate change in the pressure mapping and flow structure when the train passing through the bridge-tunnel section. The influence of the ground-bridge transition on the aerodynamic forces was much smaller than that of the bridge-tunnel section. Moreover, the variation of aerodynamic load during the process of entering and exiting the bridge-tunnel sections was both significant. In addition, in the case without crosswind, the change in the pressure change in the tunnel conformed to the law of pressure wave propagation, while under crosswind, the variation in pressure was comprehensively affected by both the train and crosswind in the tunnel.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼