RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        RhoGDI2 induced malignant phenotypes of pancreatic cancer cells via regulating Snail expression

        Yi Bin,Hu You,Zhu Dongming,Yao Jun,Zhou Jian,Zhang Yi,He Zhilong,Zhang Lifeng,Zhang Zixiang,Yang Jian,Tang Yuchen,Huang Yujie,Li Dechun,Liu Qiuhua 한국유전학회 2022 Genes & Genomics Vol.44 No.5

        Background: Rho GDP dissociation inhibitor 2 (RhoGDI2) has been shown to contribute to the aggressive phenotypes of human cancers, such as tumor metastasis and chemoresistance. Objective: This study aimed to assess the effects of RhoGDI2 on tumor progression and chemoresistance in pancreatic cancer cells. Methods: The expression of RhoGDI2 in pancreatic cancer cells was detected by Western blot analysis. Gain-of-function and loss-of-function approaches were done to examine the malignant phenotypes of the RhoGDI2-expressing or RhoGDI2-depleting cells. The correlation between RhoGDI2 and Snail was also analyzed. Results: Differential expression of RhoGDI2 protein in pancreatic cancer cell lines was identified. Gain-of-function and loss-of-function experiments showed that RhoGDI2 induced the malignant phenotypes of pancreatic cancer cells, including proliferation, migration, invasion, and gemcitabine (GEM) chemoresistance. The upregulation of RhoGDI2 stimulated the expression of Snail, resulting in the altered expression of epithelial marker E-cadherin and mesenchymal marker Vimentin, which were characteristics of the tumorigenic activity of epithelial-mesenchymal transition. The expression of RhoGDI2 and Snail was upregulated in clinical tumor samples, and higher expression of RhoGDI2 or Snail was significantly associated with poor patient survival in pancreatic ductal adenocarcinoma (PDAC). Conclusion: The findings indicated that RhoGDI2 promoted GEM resistance and tumor progression in pancreatic cancer and that RhoGDI2 might be a potential therapeutic target in patients with PDAC.

      • KCI등재

        Temperature distribution analysis of steel box-girder based on long-term monitoring data

        Hao Wang,Qingxin Zhu,Zhongqin Zou,Chenxi Xing,Dongming Feng,Tianyou Tao 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.25 No.5

        Temperature may have more significant influences on structural responses than operational loads or structural damage. Therefore, a comprehensive understanding of temperature distributions has great significance for proper design and maintenance of bridges. In this study, the temperature distribution of the steel box girder is systematically investigated based on the structural health monitoring system (SHMS) of the Sutong Cable-stayed Bridge. Specifically, the characteristics of the temperature and temperature difference between different measurement points are studied based on field temperature measurements. Accordingly, the probability density distributions of the temperature and temperature difference are calculated statistically, which are further described by the general formulas. The results indicate that: (1) the temperature and temperature difference exhibit distinct seasonal characteristics and strong periodicity, and the temperature and temperature difference among different measurement points are strongly correlated, respectively; (2) the probability density of the temperature difference distribution presents strong non-Gaussian characteristics; (3) the probability density function of temperature can be described by the weighted sum of four Normal distributions. Meanwhile, the temperature difference can be described by the weighted sum of Weibull distribution and Normal distribution.

      • KCI등재

        Estrogen negatively regulates the renal epithelial sodium channel (ENaC) by promoting Derlin-1 expression and AMPK activation

        Xue Zhang,Yamei Ge,Ashfaq-Ahmad-Shah Bukhari,Qian Zhu,Yachen Shen,Min Li,Hui Sun,Dongming Su,Xiubin Liang 생화학분자생물학회 2019 Experimental and molecular medicine Vol.51 No.-

        The main functions of the epithelial sodium channel (ENaC) in the kidney distal nephron are mediation of sodium and water balance and stabilization of blood pressure. Estrogen has important effects on sodium and water balance and on premenopausal blood pressure, but its role in the regulation of ENaC function is not fully understood. Female Sprague–Dawley rats were treated with 17β-estradiol for 6 weeks following bilateral ovariectomy. Plasma estrogen, aldosterone, creatinine, and electrolytes were analyzed, and α-ENaC and derlin-1 protein expression in the kidney was determined by immunohistochemistry and western blotting. The expression levels of α-ENaC, derlin-1, AMPK, and related molecules were also examined by western blotting and real-time PCR in cultured mouse renal collecting duct (mpkCCDc14) epithelial cells following estrogen treatment. Immunofluorescence and coimmunoprecipitation were performed to detect α-ENaC binding with derlin-1 and α-ENaC ubiquitination. The results demonstrated that the loss of estrogen elevated systolic blood pressure in ovariectomized (OVX) rats. OVX rat kidneys showed increased α-ENaC expression but decreased derlin-1 expression. In contrast, estrogen treatment decreased α-ENaC expression but increased derlin-1 expression in mpkCCDc14 cells. Moreover, estrogen induced α-ENaC ubiquitination by promoting the interaction of α-ENaC with derlin-1 and evoked phosphorylation of AMPK in mpkCCDc14 cells. Our study indicates that estrogen reduces ENaC expression and blood pressure in OVX rats through derlin-1 upregulation and AMPK activation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼