RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy

        Zhao Weichen,He Chunyuan,Jiang Junjie,Zhao Zongbiao,Yuan Hongzhong,Wang Facai,Shen Bingxiang 대한약리학회 2022 The Korean Journal of Physiology & Pharmacology Vol.26 No.6

        Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosisrelated proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.

      • KCI등재

        Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs

        Junji Ke,Zhibin Zhao,Peng Sun,Huazhen Huang,James Abuogo,Xiang Cui 전력전자학회 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.4

        This paper systematically investigates the influence of device parameters spread on the current distribution of paralleledsilicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parametersspread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested underthe same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore,comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variationsof the device parameters. Based on the concept of the control variable method, the influence of each device parameter on thesteady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, somescreening suggestions of devices or chips before parallel-connection are provided in terms of different applications and differentdriver configurations.

      • KCI등재

        Tradeoff between the Output Voltage Deviation and Recovery Time of Boost Converters

        Junjie Ge,Liqiang Yuan,Zhengming Zhao,Ting Lu,Fanbo He,Gaohui Feng 전력전자학회 2015 JOURNAL OF POWER ELECTRONICS Vol.15 No.2

        The time-optimal control for boost converters can achieve the minimum recovery time. However, their output voltage deviation is quite large. Since the minimum output voltage deviation and minimum recovery time cannot be obtained at the same time, a novel energy control is proposed to achieve a superior tradeoff between them in this paper. The peak value of the inductor current can be decreased as well. Its control parameter is easy to choose. When compared with the conventional control methods, the proposed control shows a better dynamic performance. Experimental results, which are in agreement with the theoretical analysis, are provided to verify the proposed control method.

      • KCI등재

        Flow field characteristics of an agitator system of a large diameter slurry-water shield machine

        Junjie Liao,Kun Bai,Yi-Min Xia,Haizhen Li,Xianqiong Zhao,Xuemeng Xiao,Yang Wang 대한기계학회 2021 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.35 No.4

        A numerical model was established for calculation in this study on the basis of the standard k-epsilon turbulence model and the discrete phase model of the Euler-Lagrange equation. Results of the particle image velocimetry experiment were used to verify the reliability of the numerical model. The effects of the rotation speeds, slurry densities, and impeller structures on the flow field characteristics, including velocity distribution, ballast fluidity, and power loss, were also investigated. The results indicate that the increase of rotation speed has little influence on the flow field near the wall and bottom of the agitator, and the agitator performs well when the speed is set between 30 rpm and 40 rpm. The increase of the slurry density will increase the pressure loss between the inlet and the outlet, and it will also increase the load of the agitator. Hence, the slurry density must be less than 1400 kg/m 3 . The baffle can improve the velocity distribution of the flow field and the slag discharge capacity of the agitator.

      • KCI등재

        Analysis of Switching Clamped Oscillations of SiC MOSFETs

        Junji Ke,Zhibin Zhao,Zongkui Xie,Changjun Wei,Xiang Cui 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.3

        SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

      • Topology Modeling and Vulnerability Analysis of China Mine Power Grid Based on Complex Network Theory

        Junji Wang,Caoyuan Ma,Chunxiao Li,Xinshang Zhu,Kang Zhao 보안공학연구지원센터 2016 International Journal of Grid and Distributed Comp Vol.9 No.10

        A structural vulnerability analysis of China mine power grid, which considering the particular of topological structure and the increase gas power generation nodes, is proposed based on complex network theory. According to transmission capacity of weighted network model, this paper analyses the network characteristics, including degree distribution, clustering coefficient and average path length, to prove that the mine power grid is a scale -free network. The node importance, node betweenness, edge weight and edge betweenness are regarded as the index of identification and the remaining load capacity after attack is chosen as evaluation index to analyze the structural vulnerability of mine power grid to have a fault simulation of the mine power grid before and after adding gas power generation nodes. The results of fault simulation show that the model is in line with the actual situation of the China mine power grid, and can better identify and assess the vulnerability of the mine power grid.

      • KCI등재

        An MRTF-A–ZEB1–IRF9 axis contributes to fibroblast–myofibroblast transition and renal fibrosis

        Zhao Qianwen,Shao Tinghui,Zhu Yuwen,Zong Gengjie,Zhang Junjie,Tang Shifan,Lin Yanshan,Ma Hongzhen,Jiang Zhifan,Xu Yong,Wu Xiaoyan,Zhang Tao 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        Myofibroblasts, characterized by the expression of the matricellular protein periostin (Postn), mediate the profibrogenic response during tissue repair and remodeling. Previous studies have demonstrated that systemic deficiency in myocardin-related transcription factor A (MRTF-A) attenuates renal fibrosis in mice. In the present study, we investigated the myofibroblast-specific role of MRTF-A in renal fibrosis and the underlying mechanism. We report that myofibroblast-specific deletion of MRTF-A, achieved through crossbreeding Mrtfa-flox mice with Postn-CreERT2 mice, led to amelioration of renal fibrosis. RNA-seq identified zinc finger E-Box binding homeobox 1 (Zeb1) as a downstream target of MRTF-A in renal fibroblasts. MRTF-A interacts with TEA domain transcription factor 1 (TEAD1) to bind to the Zeb1 promoter and activate Zeb1 transcription. Zeb1 knockdown retarded the fibroblast–myofibroblast transition (FMyT) in vitro and dampened renal fibrosis in mice. Transcriptomic assays showed that Zeb1 might contribute to FMyT by repressing the transcription of interferon regulatory factor 9 (IRF9). IRF9 knockdown overcame the effect of Zeb1 depletion and promoted FMyT, whereas IRF9 overexpression antagonized TGF-β-induced FMyT. In conclusion, our data unveil a novel MRTF-A–Zeb1–IRF9 axis that can potentially contribute to fibroblast–myofibroblast transition and renal fibrosis. Screening for small-molecule compounds that target this axis may yield therapeutic options for the mollification of renal fibrosis.

      • SCOPUSKCI등재

        Vacuum infiltration transformation of non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) with the pinII gene and bioassay for diamondback moth resistance

        Zhang, Junjie,Liu, Fan,Yao, Lei,Luo, Chen,Zhao, Qing,Huang, Yubi The Korean Society of Plant Biotechnology 2011 Plant biotechnology reports Vol.5 No.3

        Non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) is a popular vegetable in Asian countries. The diamondback moth (DBM), Plutella xylostella (L.), an insect with worldwide distribution, is a main pest of Brassicaceae crops and causes enormous crop losses. Transfer of the anti-insect gene into the plant genome by transgenic technology and subsequent breeding of insect-resistant varieties will be an effective approach to reducing the damage caused by this pest. We have produced transgenic non-heading Chinese cabbage plants expressing the potato proteinase inhibitor II gene (pinII) and tested the pest resistance of these transgenic plants. Non-heading Chinese cabbages grown for 45 days on which buds had formed were used as experimental materials for Agrobacterium-mediated vacuum infiltration transformation. Forty-one resistant plants were selected from 1166 g of seed harvested from the infiltrated plants based on the resistance of the young seedlings to the herbicide Basta. The transgenic traits were further confirmed by the Chlorophenol red test, PCR, and genomic Southern blotting. The results showed that the bar and pinII genes were co-integrated into the resistant plant genome. A bioassay of insect resistance in the second generation of individual lines of the transgenic plants showed that DBM larvae fed on transgenic leaves were severely stunted and had a higher mortality than those fed on the wild-type leaves.

      • KCI등재

        Research on a fault diagnosis method of rolling bearings using variation mode decomposition and deep belief network

        Huimin Zhao,Hailong Liu,Junjie Xu,Chen Guo,Wu Deng 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.9

        The working conditions of rolling bearings during the running change in real time. Aiming at the problem of fault diagnosis of rolling bearing under complex working conditions, a new fault diagnosis (VHDBN) method based on variation mode decomposition (VMD), Hilbert transform (HT) and deep belief network (DBN) is proposed in this paper. Firstly, the proposed fault diagnosis method performs the VMD decomposition for the time domain signal in order to obtain a series of intrinsic mode functions (IMFs), and Hilbert envelope spectrum is obtained by Hilbert transform. The Hilbert envelope spectrum is used to construct the feature matrix, which is used as an input of the DBN network in order to obtain a fault diagnosis model. In order to test and verify the effectiveness of the proposed fault diagnosis method, the experimental data of rolling bearings under variable load is used in here. The experimental results show that the VMD-Hilbert envelope spectrum can better reflect the fault characteristics than the time domain spectrum, and the proposed fault diagnosis method under variable load has higher recognition accuracy than other comparison methods.

      • Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

        Taisen Zhao,Yi Zhang,Kefei Li,Junjie Wang 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.84 No.6

        One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC’s chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China’s coastline. Finally, various recommendations are made for improving durability design against chloride attacks.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼