RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        20(S)-ginsenoside Rg3 exerts anti-fi brotic effect after myocardial infarction by alleviation of fi broblasts proliferation and collagen deposition through TGFBR1 signaling pathways

        Honglin Xu,Haifeng Miao,Guanghong Chen,Guoyong Zhang,Yue Hua,Yuting Wu,Tong Xu,Changlei Hu,Mingjie Pang,Leyi Tan,Xin Han,Bin Liu,Yingchun Zhou 고려인삼학회 2023 Journal of Ginseng Research Vol.47 No.6

        Background: Myocardial fibrosis post-myocardial infarction (MI) can induce maladaptive cardiacremodeling as well as heart failure. Although 20(S)-ginsenoside Rg3 (Rg3) has been applied to cardiovasculardiseases, its efficacy and specific molecular mechanism in myocardial fibrosis are largely unknown. Herein, we aimed to explore whether TGFBR1 signaling was involved in Rg3's anti-fibrotic effectpost-MI. Methods: Left anterior descending (LAD) coronary artery ligation-induced MI mice and TGF-b1-stimulated primary cardiac fibroblasts (CFs) were adopted. Echocardiography, hematoxlin-eosin andMasson staining, Western-blot and immunohistochemistry, CCK8 and Edu were used to study the effectsof Rg3 on myocardial fibrosis and TGFBR1 signaling. The combination mechanism of Rg3 and TGFBR1 wasexplored by surface plasmon resonance imaging (SPRi). Moreover, myocardial Tgfbr1-deficient mice andTGFBR1 adenovirus were adopted to confirm the pharmacological mechanism of Rg3. Results: In vivo experiments, Rg3 ameliorated myocardial fibrosis and hypertrophy and enhanced cardiacfunction. Rg3-TGFBR1 had the 1.78 10 7 M equilibrium dissociation constant based on SPRi analysis,and Rg3 inhibited the activation of TGFBR1/Smads signaling dose-dependently. Cardiac-specific Tgfbr1knockdown abolished Rg3's protection against myocardial fibrosis post-MI. In addition, Rg3 downregulatedthe TGF-b1-mediated CFs growth together with collagen production in vitro through TGFBR1signaling. Moreover, TGFBR1 adenovirus partially blocked the inhibitory effect of Rg3. Conclusion: Rg3 improves myocardial fibrosis and cardiac function through suppressing CFs proliferationalong with collagen deposition by inactivation of TGFBR1 pathway.

      • KCI등재

        Bacteria-based multiplex system eradicates recurrent infections with drug-resistant bacteria via photothermal killing and protective immunity elicitation

        Youcui Xu,Yi Wu,Yi Hu,Mengran Xu,Yanyan Liu,Yuting Ding,Jing Chen,Xiaowan Huang,Longping Wen,Jiabin Li,Chen Zhu 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background The high mortality associated with drug-resistant bacterial infections is an intractable clinical problem resulting from the low susceptibility of these bacteria to antibiotics and the high incidence of recurrent infections. Methods Herein, a photosynthetic bacteria-based multiplex system (Rp@Al) composed of natural Rhodopseudomonas palustris (Rp) and Food and Drug Administration-approved aluminum (Al) adjuvant, was developed to combat drug-resistant bacterial infections and prevent their recurrence. We examined its photothermal performance and in vitro and in vivo antibacterial ability; revealed its protective immunomodulatory effect; verified its preventative effect on recurrent infections; and demonstrated the system’s safety. Results Rp@Al exhibits excellent photothermal properties with an effective elimination of methicillin-resistant Staphylococcus aureus (MRSA). In addition, Rp@Al enhances dendritic cell activation and further triggers a T helper 1 ( TH1)/TH2 immune response, resulting in pathogen-specific immunological memory against recurrent MRSA infection. Upon second infection, Rp@Al-treated mice show significantly lower bacterial burden, faster abscess recovery, and higher survival under near-lethal infection doses than control mice. Conclusions This innovative multiplex system, with superior photothermal and immunomodulatory effects, presents great potential for the treatment and prevention of drug-resistant bacterial infections.

      • KCI등재

        Modification of coal tar-based porous carbon and analysis of its structure and electrochemical characteristics

        Xu Xinyuan,Wu Peng,Zhou Chunru,Dou Qiang,Lv Yuting 한국탄소학회 2024 Carbon Letters Vol.34 No.1

        Oxygen-rich porous carbon is of great interest for energy storage applications due to its improved local electronic structures compared with unmodified porous carbon. However, a tunable method for the preparation of oxygen-rich porous carbon with a special microstructure is still worth developing. Herein, a novel modification of porous carbon with different microstructures is facilely prepared via low-temperature solvothermal and KOH activation methods that employ the coal tar and eight substances, such as cellulose as carbon source and modifier, respectively. By testing the yield, surface group structure, lattice structures, morphology, thermal weight loss, and specific capacitance of carbonaceous mesophase, cellulose–hydrochloric acid is identified as the additive for the preparation of oxygen-rich coal tar-based porous carbon. The obtained porous carbon displays a specific surface area of up to 859.49 m2 g−1 and an average pore diameter of 2.39 nm. More importantly, the material delivers a high capacity of 275.95 F g−1 at 0.3 A g−1 and maintains a high capacitance of 220 F g−1 even at 10 A g−1. When in a neutral electrolyte, it can still retain a reversible capacity of 236.72 F g−1 at 0.3 A g−1 and 136.79 F g−1 at 10 A g−1. This work may provide insight into the design of carbon anode materials with high specific capacity.

      • SCISCIESCOPUS
      • KCI등재

        A Selective Fluorescent Probe for Ferric Ion Based on Rhodamine 6G

        Yuting Wang,Yen Leng Pak,Qingling Xu 대한화학회 2021 Bulletin of the Korean Chemical Society Vol.42 No.2

        Development of a highly selective and sensitive fluorescent turn-on probe CRho for ferric ion detection in water/acetonitrile based on rhodamine 6G and Schiff base.

      • SCIESCOPUSKCI등재

        Spoilage Lactic Acid Bacteria in the Brewing Industry

        ( Zhenbo Xu ),( Yuting Luo ),( Yuzhu Mao ),( Ruixin Peng ),( Jinxuan Chen ),( Thanapop Soteyome ),( Caiying Bai ),( Ling Chen ),( Yi Liang ),( Jianyu Su ),( Kan Wang ),( Junyan Liu ),( Birthe V. Kjell 한국미생물 · 생명공학회 2020 Journal of microbiology and biotechnology Vol.30 No.7

        Lactic acid bacteria (LAB) have caused many microbiological incidents in the brewing industry, resulting in severe economic loss. Meanwhile, traditional culturing method for detecting LAB are time-consuming for brewers. The present review introduces LAB as spoilage microbes in daily life, with focus on LAB in the brewing industry, targeting at the spoilage mechanism of LAB in brewing industry including the special metabolisms, the exist of the viable but nonculturable (VBNC) state and the hop resistance. At the same time, this review compares the traditional and novel rapid detection methods for these microorganisms which may provide innovative control and detection strategies for preventing alcoholic beverage spoilage, such as improvement of microbiological quality control using advanced culture media or different isothermal amplification methods.

      • KCI등재

        An Improved Weight Optimization AAIM Method Aided by Barometric Altimeter

        Xiaowei Xu,Jizhou Lai,Min Liu,Zhiming Zheng,Yuting Dai,Kai Huang 한국항공우주학회 2021 International Journal of Aeronautical and Space Sc Vol.22 No.3

        Aiming at the problem of insufficient availability in the satellite receiver autonomous integrity monitoring (RAIM) method, an improved aircraft autonomous integrity monitoring (AAIM) method aided by barometric altimeter based on weight optimization is proposed under the actual configuration of the airborne navigation system. The information of satellite navigation system and barometric altimeter is used to establish the observation equation of the integrated system. The algorithm for integrity monitoring and protection-level calculation is derived based on multiple solution separation, and a weight optimization is adopted to achieve a trade-off between position accuracy and integrity, which can improve the availability of AAIM method. The simulation experiment shows that when the number of visible stars is 5, the traditional method cannot effectively detect the satellite fault, and the positioning error is 43.65 m. The improved algorithm can effectively isolate the fault and reduce the positioning error to 0.37 m. Compared with the traditional RAIM algorithm and the Baro-aided AAIM algorithm, the proposed algorithm has a lower vertical protection threshold. Therefore, the algorithm in this paper improves the performance of satellite navigation system integrity monitoring and ensure the accuracy and reliability of the satellite navigation system.

      • KCI등재

        Exogenous 5-aminolevulinic acid promotes plant growth and salinity tolerance of grape rootstocks in coastal areas

        Zheng Weiwei,Tian Yuting,Shi Haili,Chen Miaomiao,Hong Seungbeom,Xu Kai,Cheng Jianhui,Zang Yunxiang 한국원예학회 2023 Horticulture, Environment, and Biotechnology Vol.64 No.2

        Salinity stress is a key factor aff ecting grape production in coastal areas. Two grape rootstock cultivars, ‘Beta’ (sensitive to salt stress) and ‘3309 C’ (resistant to salt stress), were used to investigate the physiological role of 5-aminolevlinic acid (5-ALA) in salinity tolerance. Functional capacities in the rhizosphere, leaf phenotype, photosynthetic parameters, antioxidant enzymes activities and certain physiological indexes were determined after treatment with seawater or seawa- ter followed by 100 mg/L 5-ALA application. The results showed that the functional capacities of the rhizosphere were distinct between the two management regimes. Microbial biomass and soil enzyme activities were reduced by salinity but promoted by 5-ALA. Salinity also suppressed the overall plant growth, leaf chlorophyll content, photosynthetic rate, maxi- mal photochemical effi ciency (Fv/Fm), photochemical quenching (qP), electron transport rate (ETR), root activity, ATP content, ATPase activity, and activities of the antioxidant enzymes ascorbate peroxidase (APX), peroxidase (POD), cata- lase (CAT), and superoxide dismutase (SOD) in both cultivars. Although plant growth, chlorophyll content, and activities of antioxidant enzymes in Beta were decreased to a greater extent than those in 3309 C under salinity stress, exogenous application of 5-ALA signifi cantly improved plant growth along with enhancement of all the above photosynthetic param- eters and activities of the four antioxidant enzymes in both cultivars. Seawater treatment alone signifi cantly increased non- photochemical quenching (NPQ), relative electrical conductivity (REC), and malondialdehyde (MDA) contents in leaves, especially for Beta. However, 5-ALA treatment decreased the levels of NPQ, REC, and MDA, but increased ATP content and ATPase activity in roots and leaves of both cultivars. Thus, application of 5-ALA would be benefi cial to improve the salt tolerance of grape rootstocks grown in coastal areas.

      • KCI등재

        Developing homogeneous ion exchange membranes derived from sulfonated polyethersulfone/N-phthaloyl-chitosan for improved hydrophilic and controllable porosity

        Zhixue Li,Zhun Ma,Yuting Xu,Xiaomeng Wang,Yongchao Sun,Rong Wang,Jian Wang,Xueli Gao,Jun Gao 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.8

        Ion exchange membranes (IEMs) composed of sulfonated poly (ether sulfone) (SPES) and N-phthaloyl chitosan (NPHCs) were synthesized. NPHCs was employed in membrane fabrication to improve the porosity and hydrophilicity of membranes. The effect of blend ratio of sulfonation (DS) and NPHCs content on physico-chemical characteristics of home-made membranes was investigated. The morphology of prepared membranes was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD) and scanning electron microscopy (SEM). SEM images revealed the formation of a more porous membrane structure and smoother surface. The electrochemical and physical properties of CEMs were characterized comprising water content, contact angle, ion exchange capacity (IEC) and thermal stability. Membrane water content, surface hydrophilicity and IEC were enhanced with increase of DS and NPHCs blend ratios in casting solution. Furthermore, the diffusion coefficient was also improved slightly with increase of DS and NPHCs blend ratios in prepared membranes. Membrane potential, permselectivity, transport number and areal membrane resistance all showed decreasing trends by the increase in NPHCs blend ratio in casting solution. These results indicated that the prepared membrane has good prospective and great potential for desalination in electrodialysis applications.

      • KCI등재

        Electrospun PU/PVP/GO Separator for Li-ion Batteries

        Kedong Song,Ping Zhang,Yuting Huang,Fu Xu,Yanhuai Ding 한국섬유공학회 2019 Fibers and polymers Vol.20 No.5

        Polyurethane (PU) has been intensively studied as a promising separator material for Li-ion batteries (LIBs). However, poor dimensional stability and low liquid-electrolyte wettability of pure PU separator restrict its application inLIBs. Here polyvinyl pyrrolidone (PVP) and graphene oxide were employed to enhance the thermal stability, mechanicalperformance and liquid-electrolyte compatibility of PU separator. High anodic stability above 5.25 V was reached in PU/PVP/GO separator, fully compatible with the high-voltage cathode materials. The electrochemical characterization indicatesPU/PVP/GO membrane is a promising separator for advanced LIBs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼