RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Resveratrol enhances the functionality and improves the regeneration of mesenchymal stem cell aggregates

        Yi-Jing Wang,Pan Zhao,Bing-Dong Sui,Nu Liu,Cheng-Hu Hu,Ji Chen,Chen-Xi Zheng,An-Qi Liu,Kun Xuan,Ya-Ping Pan,Yan Jin 생화학분자생물학회 2018 Experimental and molecular medicine Vol.50 No.-

        Mesenchymal stem cell (MSC)-based regeneration, specifically cell aggregate or cell sheet engineering, is a promising approach for tissue reconstruction. Considering the advantages of ease of harvest and lack of immune rejection, the application of autologous MSCs (i.e., patients’ own MSCs) in regenerative medicine has developed considerable interest. However, the impaired cell viability and regenerative potential following MSCs impacted by disease remain a major challenge. Resveratrol (RSV) exhibits reliable and extensive rejuvenative activities that have received increasing clinical attention. Here, we uncovered that resveratrol enhances the functionality and improves the regeneration of mesenchymal stem cell aggregates. Periodontal ligament MSCs (PDLSCs) from normal control subjects (N-PDLSCs) and periodontitis patients (P-PDLSCs) were investigated. Compared to N-PDLSCs, P-PDLSCs were less capable of forming cell aggregates, and P-PDLSC aggregates showed impaired osteogenesis and regeneration. These functional declines could be mimicked in N-PDLSCs by tumor necrosis factor alpha (TNF-α) treatment. Notably, a TNF-α-induced functional decline in N-PDLSC aggregates was rescued by RSV application. More importantly, in both N-PDLSCs and P-PDLSCs, RSV promoted cell aggregate formation and improved their osteogenic potential. Furthermore, as proven ectopically in vivo, the tissue regenerative capability of P-PDLSC aggregates was also enhanced after RSV treatment during aggregate formation in vitro. Finally, in a rat in situ regeneration model, we successfully applied both N-PDLSC aggregates and P-PDLSC aggregates to repair periodontal defects upon long-term functional improvements by RSV preconditioning. Together, our data unravel a novel methodology for using pharmacology (i.e., RSV)-based cell aggregate engineering to improve the functionality and facilitate the regeneration of MSCs from both healthy and inflammatory microenvironments, shedding light on improving the application of autologous MSC-mediated regenerative medicine.

      • SCIESCOPUSKCI등재

        Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells

        ( Hong Xie ),( Jia Hu ),( Huan Pan ),( Ya Xin Lou ),( Ping Lv ),( Ying Yu Chen ) 생화학분자생물학회 2014 BMB Reports Vol.47 No.2

        FAM176A (family with sequence similarity 176 member A) is a novel molecule related to programmed cell death. A decreased expression of FAM176A has been found in several types of human tumors in including lung cancers. In the present study, we investigated the biological activities of FAM176A on the human non-small cell lung cancer cell line H1299 cells. We constructed a recombinant adenovirus 5-FAM176A vector (Ad5-FAM176A) and evaluated the expression and anti-tumor activities in vitro. Cell viability analysis revealed that the adenovirus-mediated increase of FAM176A inhibited the growth of the tumor cells in a dose- and time-dependent manner. This inhibitory effect was mediated by both autophagy and apoptosis that involved caspase activation. In addition, cell cycle analysis suggested that Ad5-FAM176A could induce cell cycle arrest at the G2/M phase, all of which suggested that adenovirus-mediated FAM176A gene transfer might present a new therapeutic approach for lung cancer treatment. [BMB Reports 2014; 47(2): 104-109]

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼