RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • An Approach to Robot Commonsense Reasoning

        Kejun Wang,Tongchun Du,Xiaofei Yang 보안공학연구지원센터 2015 International Journal of Multimedia and Ubiquitous Vol.10 No.4

        To perform missions assigned by people, the mobile robot needs to learn both itself and the world it is in, to use the learned knowledge to reason and make decisions to resolve problems, and to guide further learning, and to establish its knowledge base which contains huge amounts of common sense. During the process of executing missions by reasoning and learning, it is critical to enable domain-specific robots be more tolerant rather than puzzled when encountering perturbations. In this paper, active logic is improved to deal with contradicted beliefs, metacognitive loop is incorporated to supervise and guide the whole reasoning process. Finally, route crack experiments state that this metacognitive loop and improved active logic based method can handle robot commonsense reasoning in an efficient way and be comparatively robust with perturbations.

      • SCISCIESCOPUS

        Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting

        Hou, Yang,Qiu, Ming,Nam, Gyutae,Kim, Min Gyu,Zhang, Tao,Liu, Kejun,Zhuang, Xiaodong,Cho, Jaephil,Yuan, Chris,Feng, Xinliang American Chemical Society 2017 NANO LETTERS Vol.17 No.7

        <P>Developing highly active electrocatalysts for photoelectrochemical water splitting is critical to bring solar/electrical-to-hydrogen energy conversion processes into reality. Herein, we report a three-dimensional (3D) hybrid electrocatalyst that is constructed through in situ anchoring of Co9S8 nanosheets onto the surface of Ni3Se2 nanosheets vertically aligned on an electrochemically exfoliated graphene foil. Benefiting from the synergistic effects between Ni3Se2 and Co9S8, the highly conductive graphene support, and large surface area, the novel 3D hybrid electrode delivers superior electrocatalytic activity toward water reduction in alkaline media, featuring overpotentials of -0.17 and -0.23 V to achieve current densities of 20 and 50 mA cm(-2), respectively, demonstrating an electrocatalytic performance on the top of the Ni3Se2- and Co9S8-based electrocatalysts as reported in literature. Experimental investigations and theoretical calculations confirm that the remarkable activity of the obtained material results from the unique 3D hierarchical architecture and interface reconstruction between Ni3Se2 and Co9S8 through Ni-S bonding, which leads to charge redistribution and thus lowers the energy barrier of hydrogen desorption in the water splitting process. Further integration of the 3D hybrid electrode with a macroporous silicon photocathode enables highly active and sustainable sunlight-driven water splitting in both basic media and real river water. The overall water splitting with 10 mA cm(-2) at a low voltage of 1.62 V is achieved using our hybrid as both anode and cathode catalysts, which surpasses that of the Ir/C-Pt/C couple (1.60 V) for sufficiently high overpotentials.</P>

      • KCI등재

        Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance

        Mingquan Wang,Yufeng Wang,Yifei Zhang,Chunxia Li,Shichen Gong,Shuqin Yan,Guoliang Li,Guanghui Hu,Honglei Ren,Jianfei Yang,Tao Yu,Kejun Yang 한국유전학회 2019 Genes & Genomics Vol.41 No.7

        Background Salt stress is a devastating environmental stress that causes plant growth inhibition and yield reduction. Objective The identification of salt-tolerant genes brings hope for the generation of salinity-tolerant crop plants through molecular breeding. Methods In this study, one salt-sensitive and one salt-tolerant maize inbred line were screened from 242 maize inbred lines. Reactive oxygen species (ROS)-related enzyme activities were detected and salt-responsive comparative transcriptome analysis was performed for control and 220 mM NaCl treated maize leaves. Results Salt-tolerant maize inbred line (L87) showed higher ROS-related enzyme (SOD, POD, APX and CAT) activities and accumulated relatively lower levels of ROS under salt stress. Of the total DEGs, 1856 upregulated DEGs were specific to L87, including stress tolerance-related members of the 70kDa family of heat shock proteins (Hsp70s) and aquaporins. The DEGs involved in the abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid (SA) signal transduction pathways may determine the difference in salt tolerance between the two varieties, especially one central component SnRK2, that positively regulates ABA signaling and was only upregulated in L87. Analysis of DEGs related to ROS scavenging showed that some peroxidase (POD), glutathione S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD) genes specific to L87 probably enhanced its salt tolerance. The analysis of differentially expressed transcription factors (TFs) suggested that WRKY TFs could contribute to the difference in salt tolerance between the two maize lines. Conclusion Compared with Salt-sensitive maize inbred line (L29), L87 exhibits specific regulatory mechanisms related to salt tolerance, including plant hormone interactions, ROS scavenging and the regulation of TFs. Our study identifies new candidate genes that may regulate maize tolerance to salt stress and provides useful information for breeding maize with high salt resistance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼