RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Correlation between fat accumulation and fecal microbiota in crossbred pigs

        Li Xin,Li Mengyu,Han Jinyi,Liu Chuang,Han Xuelei,Wang Kejun,Qiao Ruimin,Li Xiu-Ling,Li Xin-Jian 한국미생물학회 2022 The journal of microbiology Vol.60 No.11

        Backfat thickness (BF) is an important indicator of fat deposition capacity and lean meat rate in pigs and is very important in porcine genetics and breeding. Intestinal microbiota plays a key role in nutrient digestion and utilization with a profound impact on fat deposition of livestock animals. To investigate the relationship between the pig gut microbiome and BF, 20 low-BF (L-BF) and 20 high-BF (H-BF) pigs were selected as two groups from Yunong Black pigs in the present study. Fecal samples from pigs were analyzed for microbial diversity, composition, and predicted functionality using 16S rRNA gene sequencing. The results showed that there were significant differences in microbial β diversity between the two groups. LEfSe analysis revealed a number of bacterial features being differentially enriched in either L-BF or H-BF pigs. Spearman correlation analysis identified the abundance of Oscillospira, Peptococcus, and Bulleidia were significantly positive correlations with BF (P < 0.05), while Sutterella and Bifidobacterium were significantly negatively correlated with BF (P < 0.05). Importantly, the bacteria significantly positively correlated with BF mainly belong to Clostridium, which can ferment host-indigestible plant polysaccharides into shortchain fatty acid (SCFA) and promote fat synthesis and deposition. Predictive functional analysis indicated that the pathway abundance of cell motility and glycan biosynthesis were significantly widespread in the microbiota of the H-BF group. The results of this study will be useful for the development of microbial biomarkers for predicting and improving porcine BF, as well as for the investigation of targets for dietary strategies.

      • SCISCIESCOPUS

        TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

        Wang, Xin,Chen, Xuelei,Park, Changbom IOP Publishing 2012 The Astrophysical journal Vol.747 No.1

        <P>The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.</P>

      • KCI등재

        Integrated proteomic and metabolomic analyses reveal significant changes in chloroplasts and mitochondria of pepper (Capsicum annuum L.) during Sclerotium rolfsii infection

        Liao Hongdong,Wen Xiangyu,Deng Xuelei,Wu Yonghong,Xu Jianping,Li Xin,Zhou Shudong,Li Xuefeng,Zhu Chunhui,Luo Feng,Ma Yanqing,Zheng Jingyuan 한국미생물학회 2022 The journal of microbiology Vol.60 No.5

        Infection by Sclerotium rolfsii will cause serious disease and lead to significant economic losses in chili pepper. In this study, the response of pepper during S. rolfsii infection was explored by electron microscopy, physiological determination and integrated proteome and metabolome analyses. Our results showed that the stomata of pepper stems were important portals for S. rolfsii infection. The plant cell morphology was significantly changed at the time of the fungal hyphae just contacting (T1) or surrounding (T2) the pepper. The chlorophyll, carotenoid, and MDA contents and the activities of POD, SOD, and CAT were markedly upregulated at T1 and T2. Approximately 4129 proteins and 823 metabolites were clearly identified in proteome and metabolome analyses, respectively. A change in 396 proteins and 54 metabolites in pepper stem tissues was observed at T1 compared with 438 proteins and 53 metabolites at T2. The proteins and metabolites related to photosynthesis and antioxidant systems in chloroplasts and mitochondria were disproportionally affected by S. rolfsii infection, impacting carbohydrate and amino acid metabolism. This study provided new insights into the response mechanism in pepper stems during S. rolfsii infection, which can guide future work on fungal disease resistance breeding in pepper.

      • KCI등재

        Anti-Inflammatory Effect of Rosa rugosa Flower Extract in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

        Xirali Tursun,Yongxin Zhao,Zulfiya Talat,Xuelei Xin,AdilaTursun,Rahima Abdulla,Haji AkberAisa 한국응용약물학회 2016 Biomolecules & Therapeutics(구 응용약물학회지) Vol.24 No.2

        Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatory disease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flower extract, and specifically undertook pharmacological experiments which have optimized the extraction process. Our methods have yielded a standard extract enriched in phenolic compounds, named PRE. Herein, we expand our efforts and evaluated the antiinflammatory activity of PRE on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. PRE significantly inhibited production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and interleukin 1β (IL-1β), as well as expression of their synthesizing enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase2 (COX-2). Furthermore, PRE inhibited activity of mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappa B (NF-κB) signaling pathway. Our findings are the first to explain the anti-inflammatory mechanism by PRE in LPS-stimulated macrophages. Given these results, we propose that PRE has therapeutic potential in the prevention of inflammatory disorders.

      • SCIESCOPUSKCI등재

        Anti-Inflammatory Effect of Rosa rugosa Flower Extract in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

        Tursun, Xirali,Zhao, Yongxin,Talat, Zulfiya,Xin, Xuelei,Tursun, Adila,Abdulla, Rahima,AkberAisa, Haji The Korean Society of Applied Pharmacology 2016 Biomolecules & Therapeutics(구 응용약물학회지) Vol.24 No.2

        Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatory disease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flower extract, and specifically undertook pharmacological experiments which have optimized the extraction process. Our methods have yielded a standard extract enriched in phenolic compounds, named PRE. Herein, we expand our efforts and evaluated the anti-inflammatory activity of PRE on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. PRE significantly inhibited production of nitric oxide (NO), prostaglandin $E_2(PGE_2)$, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and interleukin $1{\beta}$ (IL-$1{\beta}$), as well as expression of their synthesizing enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase2 (COX-2). Furthermore, PRE inhibited activity of mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappa B (NF-${\kappa}B$) signaling pathway. Our findings are the first to explain the anti-inflammatory mechanism by PRE in LPS-stimulated macrophages. Given these results, we propose that PRE has therapeutic potential in the prevention of inflammatory disorders.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼