RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of Recombinase Polymerase Amplification Combined with Lateral Flow Strips for Rapid Detection of Cowpea Mild Mottle Virus

        Xinyang Wu,Shuting Chen,Zixin Zhang,Yihan Zhang,Pingmei Li,Xinyi Chen,Miaomiao Liu,Qian Lu,Zhongyi Li,Zhongyan Wei,Pei Xu 한국식물병리학회 2023 Plant Pathology Journal Vol.39 No.5

        Cowpea mild mottle virus (CPMMV) is a global plant virus that poses a threat to the production and quality of legume crops. Early and accurate diagnosis is essential for effective managing CPMMV outbreaks. With the advancement in isothermal recombinase polymerase amplification and lateral flow strips technologies, more rapid and sensitive methods have become available for detecting this pathogen. In this study, we have developed a reverse transcription recombinase polymerase amplification combined with lateral flow strips (RT-RPA-LFS) method for the detection of CPMMV, specifically targeting the CPMMV coat protein (CP) gene. The RT-RPA-LFS assay only requires 20 min at 40°C and demonstrates high specificity. Its detection limit was 10 copies/μl, which is approximately up to 100 times more sensitive than RT-PCR on agarose gel electrophoresis. The developed RT-RPA-LFS method offers a rapid, convenient, and sensitive approach for field detection of CPMMV, which contribute to controlling the spread of the virus.

      • Automatic cystocele severity grading in transperineal ultrasound by random forest regression

        Ni, Dong,Ji, Xing,Wu, Min,Wang, Wenlei,Deng, Xiaoshuang,Hu, Zhongyi,Wang, Tianfu,Shen, Dinggang,Cheng, Jie-Zhi,Wang, Huifang Elsevier 2017 Pattern recognition Vol.63 No.-

        <P><B>Abstract</B></P> <P>Cystocele is a woman disease that bladder herniates into vagina. Women with cystocele may have problem in urinating and higher risk of bladder infection. The treatment of cystocele highly depends on the severity. The cystocele severity is usually evaluated with the manual transperineal ultrasound measurement for the maximal distance between the bladder and the lower tip of symphysis pubis in the Valsalva maneuver. To improve the efficiency of the measurement, we propose a fully automatic scheme that can measure the distance between the two anatomic structures in each ultrasound image. The whole measurement scheme is realized with a two-phase random forest regression to infer the locations of the two structures in the images for the support of distance measurement. The experimental results suggest automatic distance measurements and the final grading by our random forest regression method are comparable to the measurements and grading scores from three medical doctors, and thus corroborate the efficacy of our method.</P> <P><B>Highlights</B></P> <P> <UL> <LI> First automatically computerized cystocele grading method on the transperineal ultrasound is developed in this study. </LI> <LI> The automatic cystocele grading on the transperineal ultrasound is realized with a two-phase random forest regression model. </LI> <LI> Auto-context features are helpful for our regression model to improve the cystocele grading results. </LI> </UL> </P>

      • KCI등재

        Heterologous expression of ZmNF-YA12 confers tolerance to drought and salt stress in Arabidopsis

        Zhang Tongtong,Zheng Dengyu,Zhang Chun,Wu Zhongyi,Yu Rong,Zhang Zhongbao 한국식물생명공학회 2022 Plant biotechnology reports Vol.16 No.4

        Drought and salinity are serious environmental factors limiting the growth and productivity of plants worldwide. Therefore, it is necessary to develop ways to improve drought and salinity stress tolerance in plants. In this study, a drought-responsive nuclear factor Y subunit A gene, ZmNF-YA12, was cloned from maize. qPCR revealed ZmNF-YA12 transcript in all vegeta- tive and reproductive tissues, with higher levels in young roots. Expression analyses of maize revealed that ZmNF-YA12 was induced by abscisic acid (ABA), jasmonic acid (JA), and abiotic stresses, including dehydration, high salinity, cold, and polyethylene glycol (PEG) treatment. The heterologous expression of ZmNF-YA12 in Arabidopsis plants resulted in increased root length and better plant growth than in wild-type (WT) plants under conditions of mannitol, salt, and JA stress on 1/2 MS medium. Transgenic Arabidopsis showed improved tolerance to drought and salt stresses in soil, and higher proline content and lower malondialdehyde (MDA) content than WT controls. The transgenic plants also maintained higher peroxidase (POD) activities than WT plants under conditions of NaCl stress. A yeast two-hybrid experiment demonstrated that ZmNF-YA12 interacted with ZmNF-YC1 and ZmNF-YC15. Moreover, the transcript levels of stress-responsive genes (RD29A, RD29B, RAB18, and RD22) were markedly increased in transgenic lines under conditions of drought and salt stress. These observa- tions suggested that the ZmNF-YA12 gene may confers drought and salt stress tolerance by regulating stress-related genes or interacting with ZmNF-YC1 and ZmNF-YC15, and has potential applications in molecular breeding with maintenance of production under conditions of stress.

      • KCI등재

        Improved performance of polyamide nanofiltration membranes by incorporating reduced glutathione during interfacial polymerization

        Zhiwei Jiao,Linjie Zhou,Mengyuan Wu,Kang Gao,Yanlei Su,Zhongyi Jiang 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.12

        Inspired by the specific amino acid sequence Asn-Pro-Ala (NPA) of water channel aquaporins (AQPs), we fabricated polyamide (PA) nanofiltration (NF) membranes by introducing reduced glutathione (GSH) in interfacial polymerization (IP) method. Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential and static water contact angle measurement were employed to characterize the chemical composition, morphology, electronegativity and hydrophilicity of the NF membranes. The water flux of GSH/PIP-TMC NF membrane reached 32.00 L m2 h1 at 0.2MPa, which was approximately twice than that of pristine PIP-TMC NF membrane when the ratio of GHS to piperazidine (PIP) was 40% during IP process. More water channels were built as GSH was embedded into PA layer. The fabricated NF membranes also took on potent rejection for dyes and Na2SO4. This study presents a simple and facile method to simulate water channels-based biological materials which may find potential application in water treatment.

      • KCI등재

        A Z-scheme CuO–ZnO–ZnS–CuS quaternary nanocomposite for solar-light-driven photocatalytic performance

        Zhu Wenli,Yang Qiaoling,Du Juan,Yin Pinpin,Yi Jun,Liu Yanmei,Wu Xuemei,Zhang Zhongyi 한국물리학회 2022 Current Applied Physics Vol.39 No.-

        A quaternary CuO–CuS–ZnO–ZnS nanocomposite was successfully synthesized via a facile microwave irradiation based on the preprepared ZnS and CuO nanoparticles. CuO–CuS–ZnO–ZnS nanocomposite was a porous photocatalyst, providing excellent adsorption performance. It was sensitive to both ultraviolet and visible light, moreover, the photoelectrochemical measurements confirmed that there was a high separation rate and low recombination rate of photo-generated charge carriers in the nanocomposite, endowing excellent photocatalytic activity in the sunlight. Under the simulated solar light irradiation, the removal efficiency of rhodamine B (RhB) pollutant (30 mg/L) over CuO–CuS–ZnO–ZnS nanocomposite was 33.98 and 2.90 times of pristine CuO and ZnS, respectively. The outstandingt photocatalytic performance was attributed to Z-scheme charge transfer path.

      • KCI등재

        An Alkaline pH Control Strategy for Methionine Adenosyltransferase Production in Pichia pastoris Fermentation

        Xiaoqing Hu,Ju Chu,Si-Liang Zhang,Ying-ping Zhuang,Xin Wu,Huaxin Chen,Zhongyuan Lv,Zhongyi Yuan 한국생물공학회 2014 Biotechnology and Bioprocess Engineering Vol.19 No.5

        Pichia pastoris is a successful system forexpressing heterologous proteins and its fermentation pH isalways maintained below 7.0. However, particular proteinsare unstable under acidic conditions, such as methionineadenosyltransferase (MAT), and thus fermentation underacidic pH conditions is unsuitable because protein activityis lost owing to denaturation. Here, a strategy employingalkaline pH in the late fermentation period was developedto improve MAT production. Initially, P. pastoris KM71was transformed with the mat gene to overexpress MAT. After 72 h of in vitro incubation at different pH values, theexpressed MAT displayed highest stability at pH 8.0;however, pH 8.0 inhibited cell growth and induced cellrupture, thus affecting protein production. To balance MATstability and Pichia cell viability, different pH controlstrategies were compared. In strategy A (reference), theinduction pH was maintained at 6.0, whereas in strategy B,it was gradually elevated to 8.0 through a 25 h transitionperiod (80 ~ 105 h). MAT activity was 0.86 U/mg (twofoldhigher than the control). However, MAT content wasreduced by 50% when compared with strategy A, becauseof proteases released upon cell lysis. To improve cellviability under alkaline conditions, glycerol was added inaddition to methanol (strategy C). When compared withstrategy B, the MAT-specific activity remained nearlyconstant, whereas the expression level increased to 1.27 g/L. The alkaline pH control strategy presented herein for MATproduction represents an excellent alternative for expressingproteins that are stable only under alkaline conditions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼