RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Impact of Synoptic Weather Types on Ground-Level Ozone Concentrations in Guangzhou, China

        Wenhui Liao,Luolin Wu,Shengzhen Zhou,Xuemei Wang,Deliang Chen 한국기상학회 2021 Asia-Pacific Journal of Atmospheric Sciences Vol.57 No.2

        Although precursor concentrations were reduced by emission control in Guangzhou, southern China from 2006 to 2016, ground-level O3 concentrations increased, forming potential risks to human health. This study explored the impacts of large-scale synoptic weather circulations on O3 concentration in Guangzhou, in a particular focus on high O3 pollution episodes. Twelve local weather types were clustered based on Lamb-Jenkinson weather types (LWTs). Analyses showed that LWTs strongly impacted daily O3 concentrations: A, AS, CN, and N+ weather types were likely associated with high ozone concentrations, while the ozone levels were relatively low under C, CE, CS, and S+ types. LWTs could explain 30–40% of the inter-annual variability of O3 concentration during the dry season. Numerical model simulations further demonstrated that continuous type A weather was the leading LWT correlated with high O3 concentrations, while type C weather was the predominant type correlated with low O3 concentrations. CMIP5 model results showed that occurrences of weather type A would increase by about 25% in the high emission scenario over the 2020–2069 period, which might worsen the O3 pollution in Guangzhou in the future. The increase in frequency weather type A would not be significant under the low emission scenario during the same period. Therefore, we should strictly implement the global emission reduction plan to prevent the change of weather circulation caused by climate change from aggravating ozone pollution in the future. The strong link between O3 concentrations and LWT frequencies makes the daily occurrence of LWTs a useful predictor for episodes of high O3 pollution and makes annual frequencies of LWTs good indicators of the inter-annual variability of the O3 concentration. These results are useful in efforts to predict O3 concentrations, providing a reliable weather forecast is available.

      • KCI등재

        Research on Model of Micro-grid Green Power Transaction Based on Blockchain Technology and Double Auction Mechanism

        Zhao Wenhui,Zhang Shaochong,Xue Lei,Chang Tao,Wang Liao 대한전기학회 2024 Journal of Electrical Engineering & Technology Vol.19 No.1

        The confict between climate change and energy scarcity has recently gained widespread attention. The development and promotion of green power and renewable energy is an efcient strategy to address this issue. The widespread use of distributed renewable energy in microgrids results in decentralized power supply. The features of distributed power trading, such as low single transaction volume and frequent transaction intervals, present both possibilities and problems to the green electricity market. The usual centralized control and selling of power are no longer appropriate in this circumstance. This study proposes a decentralized energy transaction system architecture in the microgrid and connects the double auction mechanism to achieve the interests of each participant based on blockchain technology and the status quo green power trade in China. Finally, using the trading strategy and model, this study constructs a real and operational energy trading platform, and simulated experiments demonstrate the dependability and efcacy of the proposed trading mechanism.

      • SCIESCOPUSKCI등재

        SPATIAL BEHAVIOR OF SOLUTION FOR THE STOKES FLOW EQUATION

        Liu, Yan,Liao, Wenhui,Lin, Changhao Korean Mathematical Society 2011 대한수학회보 Vol.48 No.2

        In this paper, the equation of the transient Stokes flow of an incompressible viscous fluid is studied. Growth and decay estimates are established associating some appropriate cross sectional line and area integral measures. The method of the proof is based on a first-order differential inequality leading to an alternative of Phragm$\'{e}$n-Lindell$\"{o} $f type in terms of an area measure of the amplitude in question. In the case of decay, we also indicate how to bound the total energy.

      • KCI등재

        Spatial behavior of solution for the Stokes flow equation

        Yan Liu,Wenhui Liao,Changhao Lin 대한수학회 2011 대한수학회보 Vol.48 No.2

        In this paper, the equation of the transient Stokes flow of an incompressible viscous fluid is studied. Growth and decay estimates are established associating some appropriate cross sectional line and area integral measures. The method of the proof is based on a first-order differential inequality leading to an alternative of Phragm[문자]n-Lindel[문자]f type in terms of an area measure of the amplitude in question. In the case of decay, we also indicate how to bound the total energy.

      • KCI등재

        Evaluate Dry Deposition Velocity of the Nitrogen Oxides Using Noah-MP Physics Ensemble Simulations for the Dinghushan Forest, Southern China

        Qi Zhang,Ming Chang,Shengzhen Zhou,Weihua Chen,Xuemei Wang,Wenhui Liao,Jianing Dai,ZhiYong Wu 한국기상학회 2017 Asia-Pacific Journal of Atmospheric Sciences Vol.53 No.4

        There has been a rapid growth of reactive nitrogen (Nr) deposition over the world in the past decades. The Pearl River Delta region is one of the areas with high loading of nitrogen deposition. But there are still large uncertainties in the study of dry deposition because of its complex processes of physical chemistry and vegetation physiology. At present, the forest canopy parameterization scheme used in WRF-Chem model is a single-layer “big leaf” model, and the simulation of radiation transmission and energy balance in forest canopy is not detailed and accurate. Noah-MP land surface model (Noah-MP) is based on the Noah land surface model (Noah LSM) and has multiple parametric options to simulate the energy, momentum, and material interactions of the vegetation-soil-atmosphere system. Therefore, to investigate the improvement of the simulation results of WRF-Chem on the nitrogen deposition in forest area after coupled with Noah-MP model and to reduce the influence of meteorological simulation biases on the dry deposition velocity simulation, a dry deposition single-point model coupled by Noah- MP and the WRF-Chem dry deposition module (WDDM) was used to simulate the deposition velocity (Vd). The model was driven by the micro-meteorological observation of the Dinghushan Forest Ecosystem Location Station. And a series of numerical experiments were carried out to identify the key processes influencing the calculation of dry deposition velocity, and the effects of various surface physical and plant physiological processes on dry deposition were discussed. The model captured the observed Vd well, but still underestimated the Vd. The self-defect of Wesely scheme applied by WDDM, and the inaccuracy of built-in parameters in WDDM and input data for Noah-MP (e.g. LAI) were the key factors that cause the underestimation of Vd. Therefore, future work is needed to improve model mechanisms and parameterization.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼