RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review

        Ye Zhang,Li Wang,Wei Sun,Yue-hua Hu,Honghu Tang 한국공업화학회 2020 Journal of Industrial and Engineering Chemistry Vol.81 No.-

        Recent years have seen rapid improvement of technology and large-scale applications of lithium-ionbatteries, which leads to an increasing market demand for lithium. Since the land lithium resources arediminishing drastically, the sources of lithium extraction have shifted to the large amount of waterresources containing salt-lake brines and seawater. Among the varieties of aqueous recovery approaches,membrane technology seems to have huge development potential and good application prospect. This isbecause the membrane technologies exhibit excellent Li/Mg separation selectivity, with low energyconsumption and green process owing to no addition of chemicals. The present work reviews the latestadvances in various membrane technologies, including nanofiltration membrane, electrodialysis,membrane capacitive deionization approaches, solid electrolyte electrolysis-based technology, etc. Therecent developments in positively charged nanofiltration membrane are discussed in terms of thepreparation methods, membrane properties, and Li/Mg separation coefficient. In addition, the effects ofseveral factors on electrodialysis for lithium extraction and relevant mechanisms in both simple andactual saline systems are discussed, including applied voltage, VC/VD, and coexisting ions. Theapplications of electrodialysis with novel selective membrane involving nanofiltration membrane as wellas solid electrolyte membrane and perspectives for further investigation are proposed.

      • KCI등재

        Structure and Performances of xLiFePO4/C·(1 − x)Li3V2(PO4)3/C Cathode for Lithium-Ion Batteries by Using Poly(vinyl alcohol) as Carbon Source

        Chang-ling Fan,Wei-hua Zhang,Tao-tao Zeng,Ling-fang Li,Xiang Zhang,Shao-chang Han 대한화학회 2015 Bulletin of the Korean Chemical Society Vol.36 No.11

        Poly(vinyl alcohol), whose pyrolysis carbon possesses high conductivity of 8.88 × 10−1 S/cm, was used to synthesize xLiFePO4/C·(1 − x)Li3V2(PO4)3/C cathode. It was characterized by X-ray diffraction, scanning electron microscopy, conductivity, cyclic voltammetry, and galvanostatic charge and discharge experiments. Results show that LiFePO4/C and Li3V2(PO4)3/C coexists in the cathode. The particles sizes of 0.75LiFePO4/C·0.25Li3V2(PO4)3/C (x = 0.75) are much smaller than 100 nm due to the role of poly(vinyl alcohol). Its conductivity is 8.79 × 10−2 S/cm. The oxidative and reductive peaks in cyclic voltammetry are sharp and symmetrical. Their low potential gaps indicate that the extractions and insertions of lithium ion possess excellent reversibility. Its discharge capacities at 1 and 5 C are 141.1 and 100.1 mAh/g. The more Li3V2(PO4)3/C in cathode results in the deterioration of electrochemical performances due to its low theoretical capacity. It is concluded that poly(vinyl alcohol) is an effective carbon source in the preparation of xLiFePO4/C·(1 − x)Li3V2(PO4)3/C composite cathode with excellent performances.

      • KCI등재

        Identification of candidate odorant‐degrading enzyme genes in the antennal transcriptome of Aphidius gifuensis

        Kang Zhi‐Wei,Liu Fang‐Hua,Xu Yong‐Yu,Cheng Jia‐Hui,Lin Xiao‐Li,Jing Xiang‐Feng,Tian Hong‐Gang,Liu Tong‐Xian 한국곤충학회 2021 Entomological Research Vol.51 No.1

        Odorant‐degrading enzymes (ODEs) have been found in insect antennae and play a critical role in signal chemical degradation once the message is conveyed. Significant progress has been made in characterizing ODEs in a variety of pests but very little is known in their natural enemies. We have carried out an antennae‐ and sex‐specific transcriptome of Aphidius gifuensis, a natural enemy of aphid, to identify the candidate ODEs. Based on the antennae‐ and sex‐specific transcriptome, a total of 100 putative ODEs were identified including one aldehyde oxidase (AOX), four alcohol dehydrogenases (ADs), eight UDP‐glucuronosyltransferases (UGTs), 45 cytochrome P450 (P450s), nine glutathione S‐transferases (GSTs) and 40 carboxylesterases (CCEs or CXEs). Additionally, we used RT‐qPCR to determine the expression profiles of these genes in tissues of both sexes. Based on the phylogenic analysis and tissue‐expression patterns, AgifEstE4, AgifCXE3, AgifCCE4, AgifCCE7, and AgifCCE18 were suggested as key ODEs in A. gifuensis. In addition, the female or male specifically enriched genes, such as AgifCCE17, AgifEstB1, AgifCYP18a1, AgifUGT2C2, were also considered to involve in the chemosensory processing in A. gifuensis. This study not only identified the candidate ODEs in A. gifuensis but also provided source for further exploration of the molecular mechanisms of chemical signal transductions in A. gifuensis, as well as other hymenopteran species.

      • Disruption of endothelial barrier function is linked with hyposecretion and lymphocytic infiltration in salivary glands of Sjögren's syndrome

        Cong, Xin,Zhang, Xue-Ming,Zhang, Yan,Wei, Tai,He, Qi-Hua,Zhang, Li-Wei,Hua, Hong,Lee, Sang-Woo,Park, Kyungpyo,Yu, Guang-Yan,Wu, Li-Ling Elsevier 2018 Biochimica et biophysica acta. Molecular basis of Vol.1864 No.10

        <P><B>Abstract</B></P> <P>Sjögren's syndrome (SS) is an inflammatory autoimmune disease that causes hyposecretion in salivary glands. Endothelial tight junctions (TJs) play crucial roles in salivation and barrier function of blood vessels. However, whether the alteration of endothelial TJs were involved in pathogenesis of SS was still unknown. Here, the ultrastructure and function of endothelial TJs in submandibular glands (SMGs) were detected by transmission electron microscopy and in vivo paracellular permeability assay in different aged NOD mouse model for SS. CFSE-labeled lymphocytes were injected into tail vein to trace the infiltration, while claudin-5 expression and distribution were detected by immunofluorescence, qRT-PCR, and western blot. Results showed that the stimulated salivary flow rate was gradually decreased and lymphocytic infiltration was found as age increased in 12- and 21-week-old NOD mice, but not 7-week-old NOD mice. Blood vessels were dilated, while endothelial TJ width and paracellular tracer transport were increased in 12-week-old NOD mice. Moreover, the injected CFSE-labeled lymphocytes were observed in SMGs of 12-week-old NOD mice. Claudin-5 level was increased and relocalized from the apical portion of neighboring endothelial cells to lateral membranes and cytoplasm in 12-week-old NOD mice. Additionally, the alteration of claudin-5 expression and distribution was further confirmed in labial salivary glands and bilateral parotid glands from SS patients. In cultured human microvessel endothelial cell line (HMEC-1), IFN-γ stimulation significantly increased claudin-5 expression. Taken together, we identified that the endothelial TJ barrier was disrupted and contributed to the development of salivary hyposecretion and lymphocytic infiltration in SS.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Endothelial tight junction barrier is disrupted in hyposecretory submandibular glands from Sjögren's syndrome mouse model </LI> <LI> The disrupted salivary endothelial barrier is linked with lymphocytic infiltration in Sjögren's syndrome mouse model </LI> <LI> The redistribution of claudin-5 is responsible for disrupted endothelial barrier in salivary glands from Sjögren's syndrome </LI> </UL> </P>

      • Mechanism of Fatty Acid Synthase in Drug Tolerance Related to Epithelial-mesenchymal Transition of Breast Cancer

        Li, Jun-Qin,Xue, Hui,Zhou, Lan,Dong, Li-Hua,Wei, Da-Peng,Li, Hua Asian Pacific Journal of Cancer Prevention 2014 Asian Pacific journal of cancer prevention Vol.15 No.18

        Objective: The mechanism of action of fatty acid synthase (FASN) in drug tolerance of breast cancer cells with epithelial-mesenchymal transition (EMT) features was investigated. Methods: The breast cancer cell line MCF-7-MEK5 with stably occurring EMT and tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$) tolerance was used as the experimental model, whereas MCF-7 acted as the control. Tumour cells were implanted into nude mice for in vivo analysis, and cerulenin was used as a FASN inhibitor. RT-PCR, real-time quantitative PCR and Western blot were employed to detect the expression of FASN, TNFR-1, TNFR-2, Wnt-1, ${\beta}$-catenin and cytC at the RNA and protein levels. Results: Compared with MCF-7, TNFR-1 expression in MCF-7-MEK5 was slightly changed, TNFR-2 was decreased, and FASN, Wnt-1, ${\beta}$-catenin and cytC were increased. The expression of Wnt-1 and ${\beta}$-catenin in MCF-7-MEK5 decreased after cerulenin treatment, whereas cytC expression increased. Conclusions: The important function of FASN in the drug tolerance of breast cancer may be due to the following mechanisms: FASN downregulated TNFR-2 expression through lipid rafts to make the cells less sensitive to TNF-${\alpha}$, and simultaneously activated the Wnt-$1/{\beta}$-catenin signalling pathway. Thus, cytC expression increased, which provided cells with anti-apoptotic capacity and induced drug tolerance.

      • SCIESCOPUS

        Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

        Li, Shu-cai,Wang, Jian-hua,Chen, Wei-zhong,Li, Li-ping,Zhang, Qian-qing,He, Peng Techno-Press 2016 Geomechanics & engineering Vol.11 No.2

        The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

      • Research Paper : Pattern afPatterns of defoliation and their effect on the plant growth and photosynthetic characteristics of Ipomoea cairicaz

        ( Wei Hua Li ),( Jian Ning Luo ),( Xing Shan Tian ),( Chan Glian Peng ),( Xianye Zhou ) 한국잡초학회 2012 Weed Biology and Management Vol.12 No.1

        In order to determine the susceptibility of Ipomoea cairica to herbivory, the compensatory growth and photosynthetic characteristics of I. cairica plants were measured after simulated herbivory by leaf trimming in three patterns: leaf-apex removal, leaf-edge removal, and perforation. The leaf-edge removal resulted in a significantly reduced total biomass and root biomass of the plants, but the leaf-apex removal and perforation had no significant influence on the plant growth. The defoliation patterns had significant effects on the photosynthesis of I. cairica. The net photosynthetic rate and stomatal conductance of the plants whose leaf edges had been removed were the highest among the three defoliation patterns and the fraction of absorbed light that is used in Photosystem II photochemistry increased greatly, while the fraction of light energy that is dissipated thermally decreased. The increased photosynthetic rate as a result of the leaf-edge removal treatment could be attributed to a decrease in stomatal limitation and an increase in the Rubisco content, as well as higher photosynthetic efficiency and less light energy being dissipated as heat. Increased photosynthesis in the plants whose leaf edges had been removed changed the carbon allocation and resulted in less root development. As the expansion of I. cairica primarily depends on clonal growth, smaller roots could limit its uptake of nutrients from the soil. These direct and indirect effects indicate that leaf-edgefeeding herbivores could have potential in the biological control of I. cairica.

      • KCI등재

        Cordycepin protects against β–amyloid and ibotenic acid– induced hippocampal CA1 pyramidal neuronal hyperactivity

        Li-Hua Yao,Jinxiu Wang,Chao Liu,Shanshan Wei,Guoyin Li,Songhua Wang,Wei Meng,Zhi-Bin Liu,Li-Ping Huang 대한약리학회 2019 The Korean Journal of Physiology & Pharmacology Vol.23 No.6

        Cordycepin exerts neuroprotective effects against excitotoxic neuronal death. However, its direct electrophysiological evidence in Alzheimer’s disease (AD) remains unclear. This study aimed to explore the electrophysiological mechanisms underlying the protective effect of cordycepin against the excitotoxic neuronal insult in AD using whole-cell patch clamp techniques. β-Amyloid (Aβ) and ibotenic acid (IBO)–induced injury model in cultured hippocampal neurons was used for the purpose. The results revealed that cordycepin significantly delayed Aβ + IBO–induced excessive neuronal membrane depolarization. It increased the onset time/latency, extended the duration, and reduced the slope in both slow and rapid depolarization. Additionally, cordycepin reversed the neuronal hyperactivity in Aβ + IBO–induced evoked action potential (AP) firing, including increase in repetitive firing frequency, shortening of evoked AP latency, decrease in the amplitude of fast afterhyperpolarization, and increase in membrane depolarization. Further, the suppressive effect of cordycepin against Aβ + IBO–induced excessive neuronal membrane depolarization and neuronal hyperactivity was blocked by DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor–specific blocker). Collectively, these results revealed the suppressive effect of cordycepin against the Aβ + IBO–induced excitotoxic neuronal insult by attenuating excessive neuronal activity and membrane depolarization, and the mechanism through the activation of A1R is strongly recommended, thus highlighting the therapeutic potential of cordycepin in AD.

      • SCIESCOPUSKCI등재

        Cordycepin protects against β–amyloid and ibotenic acid– induced hippocampal CA1 pyramidal neuronal hyperactivity

        Li-Hua Yao,Jinxiu Wang,Chao Liu,Shanshan Wei,Guoyin Li,Songhua Wang,Wei Meng,Zhi-Bin Liu,Li-Ping Huang 대한약리학회 2019 The Korean Journal of Physiology & Pharmacology Vol.23 No.6

        Cordycepin exerts neuroprotective effects against excitotoxic neuronal death. However, its direct electrophysiological evidence in Alzheimer’s disease (AD) remains unclear. This study aimed to explore the electrophysiological mechanisms underlying the protective effect of cordycepin against the excitotoxic neuronal insult in AD using whole-cell patch clamp techniques. β-Amyloid (Aβ) and ibotenic acid (IBO)–induced injury model in cultured hippocampal neurons was used for the purpose. The results revealed that cordycepin significantly delayed Aβ + IBO–induced excessive neuronal membrane depolarization. It increased the onset time/latency, extended the duration, and reduced the slope in both slow and rapid depolarization. Additionally, cordycepin reversed the neuronal hyperactivity in Aβ + IBO–induced evoked action potential (AP) firing, including increase in repetitive firing frequency, shortening of evoked AP latency, decrease in the amplitude of fast afterhyperpolarization, and increase in membrane depolarization. Further, the suppressive effect of cordycepin against Aβ + IBO–induced excessive neuronal membrane depolarization and neuronal hyperactivity was blocked by DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor–specific blocker). Collectively, these results revealed the suppressive effect of cordycepin against the Aβ + IBO–induced excitotoxic neuronal insult by attenuating excessive neuronal activity and membrane depolarization, and the mechanism through the activation of A1R is strongly recommended, thus highlighting the therapeutic potential of cordycepin in AD.

      • KCI등재

        Phytochemistry and pharmacology of natural prenylated flavonoids

        Hua-Wei Lv,Qiao-Liang Wang,Meng Luo,Meng-Di Zhu,Hui-Min Liang,Wen-Jing Li,Hai Cai,Zhong-Bo Zhou,Hong Wang,Sheng-Qiang Tong,Xing-Nuo Li 대한약학회 2023 Archives of Pharmacal Research Vol.46 No.4

        Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼