RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Colors as Catalysts in Enzymatic Reactions

        Samina T. Yousuf Azeemi,Syed Mohsin Raza,Masoom Yasinzai 사단법인약침학회 2008 Journal of Acupuncture & Meridian Studies Vol.1 No.2

        We studied the effects of visible range irradiation (in vitro) on the enzyme solutions (glucose oxidase, cholesterol oxidase + cholesterol esterase and lipase) in order to infer the changes produced in the human body after chromotherapy. The glucose oxidase showed enhanced activity to the color purple (464 nm), while the activity of the other enzymes, cholesterol esterase + cholesterol oxidase and lipase, increased when exposed to dark violet (400 nm). Purple is being used in conventional chromotherapy for diabetes, as supported by the experimental observation in which purple enhanced the activity of enzymes responsible for the oxidation of glucose. Specific wavelengths regulate living processes by acting as catalysts in enzyme activity, while some wavelengths may reduce enzyme activity. The irradiation of specific wavelengths effect enzymatic processes, which as a consequence, accelerated biochemical reactions. This particular frequency when provided to the enzymes (in vitro) lead to changes which may well be occurring in vivo. We studied the effects of visible range irradiation (in vitro) on the enzyme solutions (glucose oxidase, cholesterol oxidase + cholesterol esterase and lipase) in order to infer the changes produced in the human body after chromotherapy. The glucose oxidase showed enhanced activity to the color purple (464 nm), while the activity of the other enzymes, cholesterol esterase + cholesterol oxidase and lipase, increased when exposed to dark violet (400 nm). Purple is being used in conventional chromotherapy for diabetes, as supported by the experimental observation in which purple enhanced the activity of enzymes responsible for the oxidation of glucose. Specific wavelengths regulate living processes by acting as catalysts in enzyme activity, while some wavelengths may reduce enzyme activity. The irradiation of specific wavelengths effect enzymatic processes, which as a consequence, accelerated biochemical reactions. This particular frequency when provided to the enzymes (in vitro) lead to changes which may well be occurring in vivo.

      • KCI등재

        Phenol removal and hydrogen production from water: Silver nanoparticles decorated on polyaniline wrapped zinc oxide nanorods

        Asim Jilani,Mohammad Omaish Ansari,Ghani ur Rehman,Muhammad Bilal Shakoor,Syed Zajif Hussain,Mohd Hafiz Dzarfan Othman,Sajid Rashid Ahmad,Mohsin Raza Dustgeer,Ahmed Alshahrie 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.109 No.-

        The toxic and carcinogenic organic compounds discharge from industries, contaminate the natural reservoirsof water and air which eventually pose a global threat not only to the aquatic life but also to thehumanity. Herein, ternary nanocomposites of silver-nanoparticle (AgNPs)-decorated on polyaniline(Pani)-wrapped zinc oxide nanorods (AgNPs@Pani/ZnO) were prepared via a facile approach. Thenanocomposite degraded 97.91% phenol with an optimized dosage and concentration of H2O2. Moreover, the apparent rate constant for phenol degradation was 3.69 times higher than for pure ZnOnanorods. The hydrogen production from AgNPs@Pani/ZnO was 1.58 and 2.74 times higher than Pani/ZnO and ZnO, respectively. The enhanced phenol degradation and hydrogen production is attributed tothe transfer of holes to the Pani, from which the electrons were transferred to the conduction band ofZnO and eventually to the conduction band of the AgNPs, where they accelerated the redox reactionsfor rapid photolysis of water and phenol. The concentration of the catalyst dosage affected the rate ofphenol degradation. Further, response surface methodology was also applied in order to design 13 setsof random experiments in which the catalyst dosage and degradation time were varied to predict thephenol degradation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼