RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Original Article : A Disintegrin and Metalloprotease with Thrombospondin Motif 2 May Contribute to Cirrhosis in Humans through the Transforming Growth Factor-β/SMAD Pathway

        ( Chao Dong ),( Han Jun Li ),( Shi Chang ),( Hui Jun Liao ),( Zhi Peng Zhang ),( Peng Huang ),( Hui Huan Tang ) 대한간학회 2013 Gut and Liver Vol.7 No.2

        Background/Aims: We aimed to investigate the correlation between a disintegrin and metalloprotease with thrombospondin motif 2 (ADAMTS-2) and transforming growth factor-β1 (TGF-β1) in clinical human cirrhotic tissues. Methods: The liver tissues of 24 patients (16 cases with cirrhotic portal hypertension as the cirrhosis group and eight cases with healthy livers as the normal group) were collected. Immunohistochemistry and Western blots were performed to evaluate the protein expression levels of ADAMTS-2 and TGF-β1. Western blots for other key mediators of cirrhotic progression, including SMAD2, SMAD3, TGF-β receptor II (TGFβRII), matrix metalloproteinases 2 (MMP2), and tissue inhibitor of matrix metalloproteinases 2 (TIMP2), were also performed. Results: Cirrhotic tissues showed higher percentages of collagen. The protein expression levels of ADAMTS-2 and TGF-β1 were significantly higher in the cirrhotic group as compared to the matched normal group (p<0.05), and there was a positive correlation between these two proteins (r=0.862, p<0.01). The protein expressions of MMP2, TIMP2, and TGFβRII, as well as the phosphorylated forms of SMAD2 and SMAD3, were significant higher in the cirrhotic group (p<0.01 or p<0.05). Conclusions: These findings suggested that ADAMTS-2 and TGF-β1 may play important roles in the pathogenesis of human cirrhosis; specifically, TGF-β1 may induce the expression of ADAMTS-2 through the TGFβ/SMAD pathway. (Gut Liver 2013;7:213-220)

      • KCI등재

        Phenolic constituents from Parakmeria yunnanensis and their anti-HIV-1 activity

        Shan-Zhai Shang,Huan Chen,Cheng-Qin Liang,Zhong-Hua Gao,Xue Du,Rui-Rui Wang,Yi-Ming Shi,Yong-Tang Zheng,Wei-Lie Xiao,Han Dong Sun 대한약학회 2013 Archives of Pharmacal Research Vol.36 No.10

        Three new phenolic compounds, yunnanensinsA–C (1–3), together with fourteen known ones (4–17),were isolated from the leaves and stems of Parakmeriayunnanensis. The structures of new compounds wereestablished on the basis of extensive spectroscopic analyses. Several compounds showed weak anti-HIV-1 activity.

      • KCI등재

        Comparison of demineralized bone matrix and hydroxyapatite as carriers of Escherichia coli recombinant human BMP-2

        Yuan Zhe Jin,Guang-Bin Zheng,이재협,Shi-Huan Han 한국생체재료학회 2021 생체재료학회지 Vol.25 No.3

        Background: Autograft has been widely used in various orthopedic and dental surgery for its superior osteogenicity, osteoinductivity and osteoconductivity. But the available volume of the autograft is limited and the efficacy of it is highly affected by the condition of the patients. Therefore, growth factors such as Escherichia coli bone morphogenetic protein-2 (ErhBMP-2) has been widely used in some countries and regions with various carriers that could affect the effects of the growth factors. Demineralized bone matrix (DBM) has been widely used as a bone graft substitute and growth factor carrier, but its effect as a carrier of ErhBMP-2 was less investigated. Materials and methods: Rat calvaria defect model was used in this study. We implanted ErhBMP-2 with DBM or hydroxyapatite (HA) as a carrier in 8mm calvaria defect and compared their bone regeneration effect in 4th week and 8th week after implantation with micro-CT and histology. The data was analyzed with one-way ANOVA method with Bonferroni post-hoc analysis. Result: The group with DBM as the carrier showed significantly higher bone volume and bone thickness than the groups with HA as the carrier in both weeks. And the histology sections showed less adipose tissue formed in the groups with DBM as the carrier. Conclusion: DBM could be a better carrier for ErhBMP-2 than HA.

      • KCI등재

        Osteogenic Response of MC3T3-E1 and Raw264.7 in the 3D-Encapsulated Co-Culture Environment

        Kim Jungju,Lyu Hao-Zhen,Jung Chisung,Lee Kyung Mee,Han Shi Huan,Lee Jae Hyup,Cha Misun 한국조직공학과 재생의학회 2021 조직공학과 재생의학 Vol.18 No.3

        Background: Three-dimensional (3D) in vitro cultures recapitulate the physiological microenvironment and exhibit high concordance with in vivo conditions. Improving co-culture models with different kind of cell types cultured on a 3D scaffold can closely mimic the in vivo environment. In this study, we examined the osteogenic response of pre-osteoblast MC3T3-E1 cells and Raw264.7 mouse monocytes in a 3D-encapsulated co-culture environment composed of the Cellrix® 3D culture system, which provides a physiologically relevant environment. Methods: The Cellrix® 3D Bio-Gel scaffolds were used to individually culture or co-culture two type cells in 3D microenvironment. Under 3D culture conditions, osteoblastic behavior was evaluated with an ALP assay and staining. ACP assay and TRAP staining were used as osteoclastic behavior indicator. Results: Treatment with osteoblastic induction factors (+3F) and RANKL had on positively effect on alkaline phosphatase activity but significantly inhibited to acid phosphatase activity during osteoclastic differentiation in 3D co-culture. Interestingly, alkaline phosphatase activity or acid phosphatase activity in 3D co-culture was stimulated with opposite differentiation factors at an early stage of differentiation. We guess that these effects may be related to RANK–RANKL signaling, which is important in osteoblast regulation of osteoclasts. Conclusion: In this study, the osteogenic response of 3D encapsulated pre-osteoblast MC3T3-E1 cells and mouse monocyte Raw264.7 cells was successfully demonstrated. Our 3D culture conditions will be able to provide a foundation for developing a high-throughput in vitro bone model to study the effects of various drugs and other agents on molecular pathways. Background: Three-dimensional (3D) in vitro cultures recapitulate the physiological microenvironment and exhibit high concordance with in vivo conditions. Improving co-culture models with different kind of cell types cultured on a 3D scaffold can closely mimic the in vivo environment. In this study, we examined the osteogenic response of pre-osteoblast MC3T3-E1 cells and Raw264.7 mouse monocytes in a 3D-encapsulated co-culture environment composed of the Cellrix® 3D culture system, which provides a physiologically relevant environment. Methods: The Cellrix® 3D Bio-Gel scaffolds were used to individually culture or co-culture two type cells in 3D microenvironment. Under 3D culture conditions, osteoblastic behavior was evaluated with an ALP assay and staining. ACP assay and TRAP staining were used as osteoclastic behavior indicator. Results: Treatment with osteoblastic induction factors (+3F) and RANKL had on positively effect on alkaline phosphatase activity but significantly inhibited to acid phosphatase activity during osteoclastic differentiation in 3D co-culture. Interestingly, alkaline phosphatase activity or acid phosphatase activity in 3D co-culture was stimulated with opposite differentiation factors at an early stage of differentiation. We guess that these effects may be related to RANK–RANKL signaling, which is important in osteoblast regulation of osteoclasts. Conclusion: In this study, the osteogenic response of 3D encapsulated pre-osteoblast MC3T3-E1 cells and mouse monocyte Raw264.7 cells was successfully demonstrated. Our 3D culture conditions will be able to provide a foundation for developing a high-throughput in vitro bone model to study the effects of various drugs and other agents on molecular pathways.

      • KCI등재

        Three-dimensional printed polylactic acid scaffold integrated with BMP-2 laden hydrogel for precise bone regeneration

        차미선,Yuan Zhe Jin,Jin Wook Park,Kyung Mee Lee,Shi Huan Han,Byung Sun Choi,Jae Hyup Lee 한국생체재료학회 2021 생체재료학회지 Vol.25 No.4

        Background: Critical bone defects remain challenges for clinicians, which cannot heal spontaneously and require medical intervention. Following the development of three-dimensional (3D) printing technology is widely used in bone tissue engineering for its outstanding customizability. The 3D printed scaffolds were usually accompanied with growth factors, such as bone morphometric protein 2 (BMP-2), whose effects have been widely investigated on bone regeneration. We previously fabricated and investigated the effect of a polylactic acid (PLA) cage/Biogel scaffold as a carrier of BMP-2. In this study, we furtherly investigated the effect of another shape of PLA cage/Biogel scaffold as a carrier of BMP-2 in a rat calvaria defect model and an ectopic ossification (EO) model. Method: The PLA scaffold was printed with a basic commercial 3D printer, and the PLA scaffold was combined with gelatin and alginate-based Biogel and BMP-2 to induce bone regeneration. The experimental groups were divided into PLA scaffold, PLA scaffold with Biogel, PLA scaffold filled with BMP-2, and PLA scaffold with Biogel and BMP-2 and were tested both in vitro and in vivo. One-way ANOVA with Bonferroni post-hoc analysis was used to determine whether statistically significant difference exists between groups. Result: The in vitro results showed the cage/Biogel scaffold released BMP-2 with an initial burst release and followed by a sustained slow-release pattern. The released BMP-2 maintained its osteoinductivity for at least 14 days. The in vivo results showed the cage/Biogel/BMP-2 group had the highest bone regeneration in the rat calvarial defect model and EO model. Especially, the bone regenerated more regularly in the EO model at the implanted sites, which indicated the cage/Biogel had an outstanding ability to control the shape of regenerated bone. Conclusion: In conclusion, the 3D printed PLA cage/Biogel scaffold system was proved to be a proper carrier for BMP2 that induced significant bone regeneration and induced bone formation following the designed shape.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼