RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Graphene Oxide Nanosheet-Composited Poly(N-isopropylacrylamide) Hydrogel for Cell Sheet Recovery

        Yongqing Xia,Han Wu,Dachao Tang,Shuai Gao,Binghe Chen,Zhujun Zeng,Shengjie Wang,Meiwen Cao,Dongxiang Li 한국고분자학회 2019 Macromolecular Research Vol.27 No.7

        Cell sheet engineering technique has been applied to treat various tissues without the use of a traditional scaffold. To date, methods for the cell sheet harvesting depend mostly on grafted poly(N-isopropylacrylamide) (pNIPAAm) thin layers, while the native pNIPAAm hydrogel, which possibly presents the easiest way to prepare thermo-responsive materials, is not suitable for the cell sheet harvesting due to its low cell attachment. In this study, the graphene oxide (GO) nanosheet was utilized as an additive to enhance the bio-compatibility of the pNIPAAm hydrogel. Different concentrations of GO nanosheets were added to prepare GO/pNIPAAm composite hydrogels through the in-situ free radical polymerization with polyethylene glycol dimethacrylate (PEGDA) as a cross-linker. The results indicated that the physical properties of the composite hydrogels had little difference with that of the native pNIPAAm hydrogel. However, the cell attachment, proliferation and detachment behaviors on the composite hydrogel surface were greatly enhanced. Monkey fibroblast COS7 cells attached and proliferated better on the GO/pNIPAAm composite hydrogel, while intact COS7 cell sheets could be harvested from the composite hydrogels by simply lowering the temperature. In contrast, the cells appeared as clusters on the native pNIPAAm hydrogel. Furthermore, when HeLa and COS7 cells were seeded successively onto the micropatterned GO/pNIPAAm hydrogel, there could be the formation of a patterned HeLa/COS7 cell layer. The geometrically patterned GO/pNIPAAm hydrogel may provide an easy-to-prepare material for releasing patterned cell sheets compared to the specific cell-adhesive proteins reported to make patterned cell layers.

      • KCI등재

        Preparation and photocatalytic activity of composite metal oxides derived from Salen-Cu(II) intercalated layered double hydroxides

        Yue Meng,Shengjie Xia,Guoxiang Pan,Jilong Xue,Junhui Jiang,Zheming Ni 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.8

        Copper(II) Schiff-base Complexes (Salen-Cu(II)) intercalated zinc-chromium layered double hydroxides (ZnSBCuCr-LDHs) were successfully prepared via coprecipitation. Then, a novel photocatalytic material Zn-Cu-Cr composite oxides (ZnSBCuCr-MO) was prepared after calcination at 500 oC with ZnSBCuCr-LDHs as precursor. The structure and properties of the materials were thoroughly characterized by powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES), ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the materials were investigated by photodegradation of a cationic dye Rhodamin B (RhB), which was hard to adsorb by LDHs. The effects of the photocatalyst dosage, the initial pH and temperature of RhB solution on the photocatalytic efficiency were discussed. The results showed that ZnSBCuCr-MO displayed higher photocatalytic activity for RhB than calcined ZnCr-LDHs (ZnCr-MO) and calcined ZnCuCr-LDHs (ZnCuCr-MO). Meanwhile, ZnSBCuCr- MO exhibited better stability and reusability. In addition, the possible photocatalytic mechanism and degradation pathway for RhB were studied through density functional theory (DFT) calculation of the RhB molecule, UV-vis absorption variation and LC-MS analyses of the RhB solution.

      • KCI등재

        Preparation and characterization of a novel hydrophilic poly(vinylidene fluoride) filtration membrane incorporated with Zn–Al layered double hydroxides

        Yu Zhao,Nana Li,Bin Xu,Bingzhi Dong,Shengji Xia 한국공업화학회 2016 Journal of Industrial and Engineering Chemistry Vol.39 No.-

        Hybrid poly(vinylidene fluoride) (PVDF) embedded with Zn–Al layered double hydroxides (LDH)membranes were fabricated via phase inversion. The physical and chemical properties of the novelpolymer membranes were characterized using different characterizations. Filtration and antifoulingexperiments were performed to examine the water permeability, rejection and antifouling ability of theprepared membranes. Results showed that membrane morphology was greatly changed due to theaddition of LDH and that the hybrid membrane exhibited greatly improved surface hydrophilicity, waterpermeability and antifouling property, with contact angle decreased from 76.58 to 69.08 and pure water(PW) flux increased from 8.01 L/m2 h bar to 48.95 L/m2 h bar.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼