RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Dynamic responses analysis of P and S-FGM sandwich cylindrical shell panels using a new layerwise method

        Abhilash Karakoti,Shashank Pandey,Vishesh Ranjan Kar 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.80 No.4

        This research work presents a comparison of the dynamic response of the functionally graded sandwich cylindrical shell panels (FGSCS) using a new layerwise method. The layerwise method developed assumes a first-order shear deformation theory (FSDT) for top and bottom facesheets and a third-order shear deformation theory for the core. The strain-displacement relation for FGSCS panels is obtained using Sander’s first approximation. Two different sandwich configurations are considered, one having a pure metallic core with top and bottom facesheets made of functionally graded material (FGM) and the other one having an FGM core with top and bottom facesheets made of pure ceramic and pure metal, respectively. Material properties of the FGM layers for the two configurations are varied along the thickness direction according to the power-law (P-FGM) and the sigmoid models (S-FGM) respectively. The newly developed layerwise finite element model in conjunction with Hamilton’s principle is employed to obtain the governing differential equation. Subsequently, the Newmark-Beta time integration scheme is used to obtain the dynamic response of P and S functionally graded sandwich cylindrical shell (P and S-FGSCS) panels for two configurations. The results obtained are first compared with the exact analytical results available in the literature. Numerical results are presented to investigate the effect of volume fraction index, loading conditions, core-to-facesheet thickness ratio, curvature ratio and boundary conditions on the transient response of P and S-FGSCS panels. The analysis reveals by selecting optimum parameters and gradation model, the amplitude and frequency of dynamic response of P and S-FGSCS panels can be controlled substantially.

      • Assessment of Voigt and LRVE models for thermal shock analysis of thin FGM blade: A neutral surface approach

        Ankit Kumar,Shashank Pandey 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.85 No.1

        The present work is an attempt to develop a simple and accurate finite element formulation for the assessment of thermal shock/thermally induced vibrations in pretwisted and tapered functionally graded material thin (FGM) blades obtained from Voigt and local representative volume elements (LRVE) homogenization models, based on neutral surface approach. The neutral surface of the FGM blade does not coincide with its mid-surface. A finite element model (FEM) is developed using firstorder shear deformation theory (FSDT) and the FGM turbine blade is modelled according to the shallow shell theory. The top and the bottom layers of the FGM blade are made of pure ceramic and pure metal, respectively and temperature-dependent material properties are functionally graded in the thickness direction, the position of the neutral surface also depends on the temperature. The material properties are estimated according to two different homogenization models viz., Voigt or LRVE. The top layer of the FGM blade is subjected to high temperature and the bottom surface is either thermally insulated or kept at room temperature. The solution of the nonlinear profile of the temperature in the thickness direction is obtained from the Fourier law of heat conduction in the unsteady state. The results obtained from the present FEM are compared with the benchmark examples. Next, the effect of angle of twist, intensity of thermal shock, variable chord and span and volume fraction index on the transient response due to thermal shock obtained from the two homogenization models viz., Voigt and LRVE scheme is investigated. It is shown that there can be a significant difference in the transient response calculated by the two homogenization models for a particular set of material and geometric parameters.

      • SCISCIESCOPUS
      • Study & Analysis of Role of Li-fi in Future

        Sambhav Gupta,Sarthak Gupta,Shashank Pandey,Saurabh Ranjan,Satyam Goel,Saurabh Bhatia 보안공학연구지원센터 2016 International Journal of Smart Home Vol.10 No.2

        In this hi-tech world, privacy is most important issue. Has anyone ever imagined why this problem arises? In the field of correspondence media or portable correspondence, web association is a spine of data and correspondence innovation which gives numerous administrations to client to these applications we need quick and headway of Internet integration innovation and vast range of channels[1]. Internet access speed or whether it is about downloading files, internet speed is big issue. Why not take a step further to resolve this problem? The answer to our problems is 'li-fi'. Have you ever wondered a city where internet access is wireless and without any interruption? Like other queries science has an answer to these questions also which is LIFI. LIFI is the new future. From sharing data to accessing it, can be done for laptops, smart phones, and tablets through transmitting light from LED bulb installed within the room. And for the security, if you can't see the light, you can't access the data[2].

      • SCISCIESCOPUS

        Dimerization in LBD16 and LBD18 Transcription Factors Is Critical for Lateral Root Formation

        Lee, Han Woo,Kang, Na Young,Pandey, Shashank K.,Cho, Chuloh,Lee, Sung Haeng,Kim, Jungmook American Society of Plant Biologists 2017 Plant Physiology Vol.174 No.1

        <P>LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (hereafter referred to as LBD) are plant-specific transcription factors that play important roles in a plethora of plant growth and development. The leucine (Leu) zipper-like coiled-coil motif in the lateral organ boundaries domain of the class I LBD proteins has been proposed to mediate protein dimerization, but it has not been experimentally assessed yet. LBD16 and LBD18 have been well characterized to play important roles in lateral root development in Arabidopsis (Arabidopsis thaliana). Here, we investigated the role of the coiled-coil motif in the dimerization of LBD16 and LBD18 and in transcriptional regulation and biological function. We built the molecular models of the coiled coil of LBD16 and LBD18, providing the probable Leu zipper models of the helix dimer. Using a variety of molecular techniques, such as bimolecular fluorescence complementation, luciferase complementation imaging, GST pull down, and coimmunoprecipitation assays, we showed that the conserved Leu or valine residues in the coiled-coil motif are critical for the dimerization of LBD16 or LBD18. Using transgenic Arabidopsis plants that overexpress HA:LBD16 or HA:LBD16(Q) in lbd16 or HA:LBD18 or HA:LBD18(Q) in lbd18, we demonstrated that the homodimerization of LBD18 mediated by the coiled-coil motif is crucial for transcriptional regulation via promoter binding and for lateral root formation. In addition, we found that the carboxyl-terminal region beyond the coiled-coil motif in LBD18 acts as an additional dimerization domain. These results provide a molecular basis for homodimerization and heterodimerization among the 42 Arabidopsis LBD family members for displaying their biological functions.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼