RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Anisotropic Characteristic of Irregular Columnar-jointed Rock Mass Based on Physical Model Test

        Zhinan Lin,Weiya Xu,Huanling Wang,Jiuchang Zhang,Wang Wei,Rubin Wang,Hua Ji 대한토목학회 2017 KSCE JOURNAL OF CIVIL ENGINEERING Vol.21 No.5

        Columnar joint is a special geological structure with self-organized joint network which separates the rock into an assemblage of blocks. The mechanic characteristics of irregular columnar-jointed rock mass (ICJRM) are dependent not only on the intact rock material but also on unique types of columnar joints. In effort to understand the anisotropic mechanic characteristics of ICJRM by the inherent anisotropic nature of the jointed structure, we conducted a series of uniaxial compression tests. Experiments were performed on an artificial ICJRM of 50 mm in diameter and 100 mm high. The “intact material” consisted of cement mortar and the columnar joints of photosensitive resins. The columnar joint in the specimen was made into six different orientations: 0°, 30°, 45°, 60°, 75°, and 90°, respectively, so observe the deformation behavior and failure modes of ICJRM with different various angles between the loading orientation and columnar joint were observed. Based on the analysis of the test results, the uniaxial compression strength and elastic modulus of ICJRM showed strong anisotropic behavior along with a special “U” shape in response to the angle between the loading orientation and columnar joint. Furthermore, the failure modes of ICJRM was observed.

      • KCI등재

        Determination of Strength and Deformation Properties of Columnar Jointed Rock Mass Using Physical Model Tests

        Zhinan Lin,Weiya Xu,Wei Wang,Huanling Wang,Rubin Wang,Hua Ji,Jiuchang Zhang 대한토목학회 2018 KSCE JOURNAL OF CIVIL ENGINEERING Vol.22 No.9

        The strength behavior and deformation modulus of columnar jointed rock mass have been investigated by conducting a series of uniaxial compressive tests, along with consideration of columnar joint effect. The tests have been performed on the artificial physical model samples, incorporating different angles β (which was the between the loading direction and axial direction of the columns) and heights of specimen. Columnar joint is a special geological structure with self-organized joint network which separates the rock into an assemblage of blocks. Due to the special joint network, the anisotropic characteristics of columnar joint rock mass is very remarkable. The physical model consisted of “intact rock” and “jointed filler”, replaced by cement mortar and white cement, respectively. The angle β were set to 0°, 15°, 30°, 45°, 60°, 75° and 90°, respectively, and the heights of specimen were set to five different values. Through the test, failure strength and failure modes of columnar joint rock mass with different angles β were observed. Based on the analysis of the test results, the uniaxial compression strength and average modulus of columnar joint rock mass showed strong anisotropy, showing a special “U” shape in terms of loading orientation. The size effect of columnar jointed rock mass was very typical, and the failure mode of columnar joint rock mass were analyzed. Furthermore, the relationship between failure strength and joint factor was studied.

      • SCIESCOPUSKCI등재

        Biomechanical Mechanism of Fabric Softness Discrimination

        Hu, Jiyong,Ding, Xin,Wang, Rubin The Korean Fiber Society 2007 Fibers and polymers Vol.8 No.4

        "Softness" is one of the primitive terms describing the physical and sensory attributes of fabric, however, the information for its physiological mechanism compared to statistical physical factors of fabric softness is scarce. To explain the biomechanical and the potential neurophysiological phenomenon for exploring fabric softness, a finger-fabric finite element model is used to conduct an active contact simulation analysis. The effects of surface friction index and compression modulus of fabric on softness discrimination are investigated. The interests of the study are in the contributions of these fabric variables to the changing contact area, interfacial fiction shear stress and contact pressure distributions, which are significant cognitive variables or stimulus parameters in peripheral neural levels documented by prior observations. The mechanistic data for fingerpad-fabric interaction indicate that the basis for the perception of softness of flexible and bulk fabric is likely on the spatial variation of the pressure and shear stress on the skin resulting from the surface friction index and compression property of fabric. These conclusions suggest that devices for the haptic rendering of fabric softness, based on vibration result from surface roughness, is not sufficient to perceive the soft-touch feel of fabric as a result of the cues with lack information for the changing contact area by touch.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼