RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        MiR-1299 functions as a tumor suppressor to inhibit the proliferation and metastasis of gastric cancer by targeting ARF6

        Qiu Yang,Yuan Yonggang,Luo Ping 한국유전학회 2022 Genes & Genomics Vol.44 No.2

        Background: MiRNAs belong to non-coding RNAs that are involved in cancer development. Acting as a mediator, they could regulate the expression level of numerous gens. However, the expression and function of miR-1299 in gastric cancer (GC) are not clear. Objective: To explore the role of miR-1299 in the process of GC. Methods: We detected the levels of miR-1299 in clinical samples of GC and investigated the role of miR-1299 in the regulation of the GC cells proliferation, apoptosis and metastasis. Luciferase reporter assay was employed to verify the target of miR-1299. Additionally, the proliferation, apoptosis and metastasis of AGS and SGC7901 cells were analyzed after the overexpression of miR-1299. Results: Our study showed the expression of miR-1299 was decreased in GC tissues and cell lines. It indicated that the cell proliferation, migration and invasion was inhibited, while the cell apoptosis was promoted by the over-expressed miR-1299. Also, we found that miR-1299 could directly target the 3'-untranslated region (3'UTR) of ARF6 genes. In addition, rescue assay demonstrated that miR-1299 overexpression promoted the cell apoptosis and inhibited cell growth, which could be attenuated by the overexpression of ARF6. Conclusions: These findings indicate that miR-1299 regulates cell progression in GC by targeting ARF6 genes, and suggest that miR-1299 may be a tumor suppressor in the GC progression.

      • KCI등재

        Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis

        Lingli Jiang,Soo Jin Lee,Qiu Ping Yuan,임완택,김선창,NAM SOO HAN 고려인삼학회 2018 Journal of Ginseng Research Vol.42 No.4

        Background: Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods: L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors b-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results: Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion: This study demonstrates that the lactic acid bacteria having specific b-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.

      • SCIESCOPUSKCI등재

        Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis

        Li, Ling,Lee, Soo Jin,Yuan, Qiu Ping,Im, Wan Taek,Kim, Sun Chang,Han, Nam Soo The Korean Society of Ginseng 2018 Journal of Ginseng Research Vol.42 No.4

        Background: Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods: L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors ${\beta}$-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results: Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion: This study demonstrates that the lactic acid bacteria having specific ${\beta}$-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.

      • SCIESCOPUSKCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼