RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Robust Pelvic Coordinate System Determination for Pose Changes in Multidetector-row Computed Tomography Images

        Kobashi, Syoji,Fujimoto, Satoshi,Nishiyama, Takayuki,Kanzaki, Noriyuki,Fujishiro, Takaaki,Shibanuma, Nao,Kuramoto, Kei,Kurosaka, Masahiro,Hata, Yutaka Korean Institute of Intelligent Systems 2010 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGE Vol.10 No.1

        For developing navigation system of total hip arthroplasty (THA) and evaluating hip joint kinematics, 3-D pose position of the femur and acetabulum in the pelvic coordinate system has been quantified. The pelvic coordinate system is determined by manually indicating pelvic landmarks in multidetector-row computed tomography (MDCT) images. It includes intra- and inter-observer variability, and may result in a variability of THA operation or diagnosis. To reduce the variability of pelvic coordinate system determination, this paper proposes an automated method in MDCT images. The proposed method determines pelvic coordinate system automatically by detecting pelvic landmarks on anterior pelvic plane (APP) from MDCT images. The method calibrates pelvic pose by using silhouette images to suppress the affect of pelvic pose change. As a result of comparing with manual determination, the proposed method determined the coordinate system with a mean displacement of $2.6\;{\pm}\;1.6$ mm and a mean angle error of $0.78\;{\pm}\;0.34$ deg on 5 THA subjects. For changes of pelvic pose position within 10 deg, standard deviation of displacement was 3.7 mm, and of pose was 1.28 deg. We confirmed the proposed method was robust for pelvic pose changes.

      • KCI등재

        Robust Pelvic Coordinate System Determination for Pose Changes in Multidetector-row Computed Tomography Images

        Syoji Kobashi,Satoshi Fujimoto,Takayuki Nishiyama,Noriyuki Kanzaki,Takaaki Fujishiro,Nao Shibanuma,Kei Kuramoto,Masahiro Kurosaka,Yutaka Hata 한국지능시스템학회 2010 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGE Vol.10 No.1

        For developing navigation system of total hip arthroplasty (THA) and evaluating hip joint kinematics, 3-D pose position of the femur and acetabulum in the pelvic coordinate system has been quantified. The pelvic coordinate system is determined by manually indicating pelvic landmarks in multidetector-row computed tomography (MDCT) images. It includes intra- and inter-observer variability, and may result in a variability of THA operation or diagnosis. To reduce the variability of pelvic coordinate system determination, this paper proposes an automated method in MDCT images. The proposed method determines pelvic coordinate system automatically by detecting pelvic landmarks on anterior pelvic plane (APP) from MDCT images. The method calibrates pelvic pose by using silhouette images to suppress the affect of pelvic pose change. As a result of comparing with manual determination, the proposed method determined the coordinate system with a mean displacement of 2.6 ± 1.6 mm and a mean angle error of 0.78 ± 0.34 deg on 5 THA subjects. For changes of pelvic pose position within 10 deg, standard deviation of displacement was 3.7 mm, and of pose was 1.28 deg. We confirmed the proposed method was robust for pelvic pose changes.

      • KCI등재

        Analysis of popliteal artery location for high tibial and distal tuberosity osteotomy using contrast-enhanced computed tomography

        ( Akiyoshi Mori ),( Takehiko Matsushita ),( Nobuaki Miyaji ),( Kanto Nagai ),( Daisuke Araki ),( Noriyuki Kanzaki ),( Tomoyuki Matsumoto ),( Takahiro Niikura ),( Yuichi Hoshino ),( Ryosuke Kuroda ) 대한슬관절학회 2022 대한슬관절학회지 Vol.34 No.-

        Background: Our objective was to evaluate the location of popliteal artery (PA) in osteotomy planes during high tibial osteotomy (HTO) and to determine a safer angle for screw drilling to the tibial tuberosity during distal tuberosity osteotomy (DTO). Methods: Twenty knees in 20 patients who underwent contrast-enhanced computed tomography for cardiovascular diseases were examined. Osteotomy planes for open-wedge HTO (OWHTO) and hybrid closed-wedge HTO (hybrid CWHTO) were created using three-dimensional bone models. The distance from the posterior cortex of the tibia to the PA (dPC-PA) in the osteotomy planes was measured in the virtual osteotomy planes. The dangerous point (Point D1) was defined as the point 17.5 mm away from PA, setting the working length of the bone saw as 35 mm. The distance between the most medial point of the tibial cortex (Point M) and Point D1 in OWHTO and the most lateral point (Point L) and Point D1 in hybrid CWHTO were examined (dM-D1 and dL-D1, respectively). The location of Point D1 to the osteotomy line (%D1) was expressed as percentage, setting the start and end of the osteotomy line as 0% and 100%, respectively. To determine the safe angle for screw drilling in DTO, the angle between the line tangential to the medial cortex of the tibia and that passing through the center of the tibial tuberosity and PA were measured. Results: In OWHTO and hybrid CWHTO, the mean dPC-PA was 10.6 mm (6.9-16.5 mm) and 10.2 mm (7.3-15.4 mm), respectively. The mean dM-D1 in OWHTO was 25.9 mm (24.6-27.2 mm) and dL-D1 in hybrid CWHTO was 5.1 mm (2.9-7.4 mm). The mean %D1 was 47.6 ± 3.7% in OWHTO and 9.3 ± 4.1% in hybrid CWHTO, respectively. The minimal angle between the two lines in DTO was 35.2°. Conclusion: PAs could run within 10 mm from the posterior cortex in the osteotomy planes of HTO. Therefore, proper posterior protection is necessary when cutting posterior cortex. An angle of less than 35° against the medial cortex line would be safe for screw fixation to avoid vascular injury in DTO.

      • KCI등재

        Accurate and Easy Measurement of Sliding Distance of Intramedullary Nail in Trochanteric Fracture

        Nobuaki Chinzei,Takafumi Hiranaka,Takahiro Niikura,Takaaki Fujishiro,Shinya Hayashi,Noriyuki Kanzaki,Shingo Hashimoto,Yoshitada Sakai,Ryosuke Kuroda,Masahiro Kurosaka 대한정형외과학회 2015 Clinics in Orthopedic Surgery Vol.7 No.2

        In daily clinical practice, it is essential to properly evaluate the postoperative sliding distance of various femoral head fixation devices (HFD) for trochanteric fractures. Although it is necessary to develop an accurate and reproducible method that is unaffected by inconsistent postoperative limb position on radiography, few studies have examined which method is optimal. Therefore, the purpose of this study is to prospectively compare the accuracy and reproducibility of our four original methods in the measurement of sliding distance of the HFD. Methods: Radiographs of plastic simulated bone implanted with Japanese proximal femoral nail antirotation were taken in five limb postures: neutral, flexion, minute internal rotation, greater external rotation, and flexion with external rotation. Orthopedic surgeons performed five measurements of the sliding distance of the HFD in each of the flowing four methods: nail axis reference (NAR), modified NAR, inner edge reference, and nail tip reference. We also assessed two clinical cases by using these methods and evaluated the intraclass correlation coefficients. Results: The measured values were consistent in the NAR method regardless of limb posture, with an even smaller error when using the modified NAR method. The standard deviation (SD) was high in the nail tip reference method and extremely low in the modified NAR method. In the two clinical cases, the SD was the lowest in the modified NAR method, similar to the results using plastic simulated bone. The intraclass correlation coefficients showed the highest value in the modified NAR method. Conclusions: We conclude that the modified NAR method should be the most recommended based on its accuracy, reproducibility, and usefulness.

      • KCI등재

        Differences in preoperative planning for high-tibial osteotomy between the standing and supine positions

        ( Takehiko Matsushita ),( Shu Watanabe ),( Daisuke Araki ),( Kanto Nagai ),( Yuichi Hoshino ),( Noriyuki Kanzaki ),( Tomoyuki Matsumoto ),( Takahiro Niikura ),( Ryosuke Kuroda ) 대한슬관절학회 2021 대한슬관절학회지 Vol.33 No.-

        Introduction: Previous studies have reported that alignment changes depend on the patient’s position in orthopedic surgery. However, it has not yet been well examined how the patient’s position affects the preoperative planning in high-tibial osteotomy (HTO). Therefore, the aim of this study was to investigate the effects of the patient’s position on preoperative planning in HTO. Materials and methods: A total of 60 knees in 55 patients who underwent HTO were retrospectively examined. Virtual preoperative planning for medial open-wedge HTO (OWHTO), lateral closed-wedge HTO (CWHTO), and hybrid CWHTO were performed by setting the percentage of the weight-bearing line (%WBL) at 62% as an optimal alignment. The correction angle differences between the supine and standing radiographs were measured. The virtual %WBL (v%WBL) was determined by applying the correction angle obtained from the standing radiograph to the supine radiograph. The %WBL discrepancy (%WBLd) was calculated as v%WBL - 62 (%) to predict the possible correction errors during surgeries. A single regression analysis was performed to examine the correlation between the correction angle difference and %WBLd. Results: The mean correction angle was significantly higher when the preoperative planning was based on standing radiographs than when based on supine radiographs (P < 0.001), and the mean difference was 2.2 ± 1.5°. The difference between the two conditions in the medial opening gaps for OWHTO, lateral wedge sizes (mm) for CWHTO, and hybrid CWHTO were 2.6 ± 2.0, 2.3 ± 1.6, and 1.9 ± 1.4, respectively. The mean v%WBL was 71.2% ± 7.3%, and the mean %WBLd was 10.1% ± 7.4%. A single regression analysis revealed a linear correlation between the correction angle difference and %WBLd (%WBLd = 4.72 × correction angle difference + 0.08). No statistically significant difference in the parameters was found between the supine and standing radiographs postoperatively. Conclusions: We found significant differences in the estimated correction angles between the supine and standing radiographs in the planning for HTO. Therefore, surgeons should carefully consider the difference between supine and standing radiographs and estimate the possible correction error during surgery when planning a HTO.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼