RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A brain somatic RHEB doublet mutation causes focal cortical dysplasia type II

        Shanshan Zhao,Zhenghui Li,Muxian Zhang,Lingliang Zhang,Honghua Zheng,Jinhuan Ning,Yanyan Wang,Feng-Peng Wang,Xiaobin Zhang,Hexia Gan,Yuanqing Wang,Xian Zhang,Hong Luo,Guojun Bu,Huaxi Xu,Yi Yao,Yun-wu 생화학분자생물학회 2019 Experimental and molecular medicine Vol.51 No.-

        Focal cortical dysplasia type II (FCDII) is a cerebral cortex malformation characterized by local cortical structure disorganization, neuronal dysmorphology, and refractory epilepsy. Brain somatic mutations in several genes involved in the PI3K/AKT/mTOR pathway are associated with FCDII, but they are only found in a proportion of patients with FCDII. The genetic causes underlying the development FCDII in other patients remain unclear. Here, we carried out whole exome sequencing and targeted sequencing in paired brain–blood DNA from patients with FCDII and identified a brain somatic doublet mutation c.(A104T, C105A) in the Ras homolog, mTORC1 binding (RHEB) gene, which led to the RHEB p.Y35L mutation in one patient with FCDII. This RHEB mutation carrier had a dramatic increase of ribosomal protein S6 phosphorylation, indicating mTOR activation in the region of the brain lesion. The RHEB p.Y35L mutant protein had increased GTPλS-binding activity compared with wild-type RHEB. Overexpression of the RHEB p. Y35L variant in cultured cells also resulted in elevated S6 phosphorylation compared to wild-type RHEB. Importantly, in utero electroporation of the RHEB p.Y35L variant in mice induced S6 phosphorylation, cytomegalic neurons, dysregulated neuron migration, abnormal electroencephalogram, and seizures, all of which are found in patients with FCDII. Rapamycin treatment rescued abnormal electroencephalograms and alleviated seizures in these mice. These results demonstrate that brain somatic mutations in RHEB are also responsible for the pathogenesis of FCDII, indicating that aberrant activation of mTOR signaling is a primary driver and potential drug target for FCDII.

      • KCI등재

        Intracellular trafficking of TREM2 is regulated by presenilin 1

        Yingjun Zhao,Xiaoguang Li,Timothy Huang,Lu-lin Jiang,Zhenqiu Tan,Muxian Zhang,Irene Han-Juo Cheng,Xin Wang,Guojun Bu,Yun-wu Zhang,Qi Wang,Huaxi Xu 생화학분자생물학회 2017 Experimental and molecular medicine Vol.49 No.-

        Genetic mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to a variety of neurodegenerative diseases including Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia and Parkinson’s disease. In the brain, TREM2 is highly expressed on the cell surface of microglia, where it can transduce signals to regulate microglial functions such as phagocytosis. To date, mechanisms underlying intracellular trafficking of TREM2 remain elusive. Mutations in the presenilin 1 (PS1) catalytic subunit of the γ-secretase complex have been associated with increased generation of the amyloidogenic Aβ (amyloid-β) 42 peptide through cleavage of the Aβ precursor amyloid precursor protein. Here we found that TREM2 interacts with PS1 in a manner independent of γ-secretase activity. Mutations in TREM2 alter its subcellular localization and affects its interaction with PS1. Upregulation of PS1 reduces, whereas downregulation of PS1 increases, steady-state levels of cell surface TREM2. Furthermore, PS1 overexpression results in attenuated phagocytic uptake of Aβ by microglia, which is reversed by TREM2 overexpression. Our data indicate a novel role for PS1 in regulating TREM2 intracellular trafficking and pathophysiological function.

      • KCI등재

        Particulate Matter 2.5 Causes Deficiency in Barrier Integrity in Human Nasal Epithelial Cells

        Mu Xian,Siyuan Ma,Kuiji Wang,Hongfei Lou,Yang Wang,Luo Zhang,Chengshuo Wang,Cezmi A. Akdis 대한천식알레르기학회 2020 Allergy, Asthma & Immunology Research Vol.12 No.1

        Purpose: The effect of air pollution-related particulate matter (PM) on epithelial barrier function and tight junction (TJ) expression in human nasal mucosa has not been studied to date. This study therefore aimed to assess the direct impact of PM with an aerodynamic diameter less than 2.5 μm (PM2.5) on the barrier function and TJ molecular expression of human nasal epithelial cells. Methods: Air-liquid interface cultures were established with epithelial cells derived from noninflammatory nasal mucosal tissue collected from patients undergoing paranasal sinus surgery. Confluent cultures were exposed to 50 or 100 μg/mL PM2.5 for up to 72 hours, and assessed for 1) epithelial barrier integrity as measured by transepithelial resistance (TER) and permeability of fluorescein isothiocyanate (FITC) 4 kDa; 2) expression of TJs using real-time quantitative polymerase chain reaction and immunofluorescence staining, and 3) proinflammatory cytokines by luminometric bead array or enzyme-linked immunosorbent assay. Results: Compared to control medium, 50 and/or 100 μg/mL PM2.5-treatment 1) significantly decreased TER and increased FITC permeability, which could not be restored by budesonide pretreatment; 2) significantly decreased the expression of claudin-1 messenger RNA, claudin-1, occludin and ZO-1 protein; and 3) significantly increased production of the cytokines interleukin-8, TIMP metallopeptidase inhibitor 1 and thymic stromal lymphopoietin. Conclusions: Exposure to PM2.5 may lead to loss of barrier function in human nasal epithelium through decreased expression of TJ proteins and increased release of proinflammatory cytokines. These results suggest an important mechanism of susceptibility to rhinitis and rhinosinusitis in highly PM2.5-polluted areas.

      • KCI등재

        Short-term Haze Exposure Predisposes Healthy Volunteers to Nasal Inflammation

        Mu Xian,Kuiji Wang,Hongfei Lou,Yang Wang,Luo Zhang,Chengshuo Wang 대한천식알레르기학회 2019 Allergy, Asthma & Immunology Research Vol.11 No.5

        Purpose: This study aimed to investigate the impact of short-term haze exposure on nasal inflammation in healthy volunteers. Methods: Thirty-three healthy university students were assessed for nasal symptoms, nasal patency, upper and lower respiratory tract nitric oxide (NO) as well as inflammatory mediators and neuropeptides in nasal secretions before and after a 5-day haze episode. Peripheral blood mononuclear cells (PBMCs) were stimulated with particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5), and cytokines in the supernatants were examined. Results: Mild nasal symptoms were reported by some participants during the haze episode. Objective measures of nasal patency demonstrated that nasal airway resistance was significantly increased from baseline levels, while nasal cavity volume and minimum cross-sectional area were significantly decreased. Similarly, the levels of nasal and exhaled NO, eotaxin, interleukin (IL)-5, chemokine (C-C motif) ligand 17, IL-8, substance P, nerve growth factor and vasoactive intestinal peptides in nasal secretions were significantly increased from baseline values following the haze episode. In contrast, the levels of interferon-γ, IL-10, transforming growth factor-β and neuropeptide Y were significantly decreased. Incubation with 0.1-10 μg/mL PM2.5 significantly increased release of IL-1β, IL-4, IL-5, IL-8 and IL-10 from PBMCs. Conclusions: Short-term haze exposure may lead to nasal inflammation and hypersensitivity in healthy subjects predominantly by Th2 cytokine-mediated immune responses.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼