RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Organic-rich source rock characterization and evaluation of the Cretaceous Qingshankou Formation: results from geophysical logs of the second scientific drilling borehole in the Songliao Basin, NE China

        Xiaohuan Zhang,Changchun Zou,Jinhuan Zhao,Ning Li,Shuxia Zhang,Kouamelan Serge Kouamelan,Liang Xiao,Huolin Ma,Yixiong Niu 한국지질과학협의회 2019 Geosciences Journal Vol.23 No.1

        The second continental scientific drilling (SKII east) borehole in the Songliao Basin has been planned to be the deepest borehole to drill through the Cretaceous continental strata under the framework of the International Continental Scientific Drilling Program (ICDP) up to date. This borehole was designed not only to explore the potential relationships between dinosaur extinction and climate environment during the Cretaceous but also to achieve new breakthroughs in oil and gas exploration. The high hydrocarbon (oil and gas) potential of a source rock is highly dependent on its organic content. We used geophysical log data of Borehole SKII east to evaluate the organic content of organic-rich source rock. In the period of the first member in the Qingshankou Formation (K2qn1) from the study area, high accommodation space and anoxic environment could promote organic matter deposition. Firstly, based on geological information and abundant geophysical log data, the basic geophysical characteristics (including petrophysical, lithological, mineralogical, and sedimentary properties) of the Qingshankou Formation in Borehole SKII east were studied. Secondly, geophysical log response characteristics (including resistivity, porosity, radioactivity, mineral and element) of organic-rich source rocks were analyzed. Thirdly, we tried to obtain suitable methods to predict total organic carbon (TOC) content of the target formation with geophysical log data. The laboratorymeasured TOC values of core samples from Borehole SKI south were used to make calibrations with calculated TOC values from geophysical logs. Results from improved ΔlogR technique and Dual_Vsh method are consistent, and indicate that these two methods are effective in this formation. The calculated TOC values from these two methods are relatively desirable, and show that the organic-rich source rocks with high TOC content occurred in the K2qn1 (1646.00~1669.00 m). The highest TOC content can reach 9.15%. The bed thicknesses of organic-rich source rocks are totally up to 7.88 m. These organic-rich source rocks can be considered as excellent. This study demonstrated that improve ΔlogR technique can be applied to evaluate source rocks in the formations without maturity data, and the new method Dual_Vsh is also valid in the Qingshankou Formation. The organic-rich source rock evaluation results could promote further exploration and development of oil and gas resources in the upper Cretaceous formations, Songliao Basin.

      • KCI등재

        A brain somatic RHEB doublet mutation causes focal cortical dysplasia type II

        Shanshan Zhao,Zhenghui Li,Muxian Zhang,Lingliang Zhang,Honghua Zheng,Jinhuan Ning,Yanyan Wang,Feng-Peng Wang,Xiaobin Zhang,Hexia Gan,Yuanqing Wang,Xian Zhang,Hong Luo,Guojun Bu,Huaxi Xu,Yi Yao,Yun-wu 생화학분자생물학회 2019 Experimental and molecular medicine Vol.51 No.-

        Focal cortical dysplasia type II (FCDII) is a cerebral cortex malformation characterized by local cortical structure disorganization, neuronal dysmorphology, and refractory epilepsy. Brain somatic mutations in several genes involved in the PI3K/AKT/mTOR pathway are associated with FCDII, but they are only found in a proportion of patients with FCDII. The genetic causes underlying the development FCDII in other patients remain unclear. Here, we carried out whole exome sequencing and targeted sequencing in paired brain–blood DNA from patients with FCDII and identified a brain somatic doublet mutation c.(A104T, C105A) in the Ras homolog, mTORC1 binding (RHEB) gene, which led to the RHEB p.Y35L mutation in one patient with FCDII. This RHEB mutation carrier had a dramatic increase of ribosomal protein S6 phosphorylation, indicating mTOR activation in the region of the brain lesion. The RHEB p.Y35L mutant protein had increased GTPλS-binding activity compared with wild-type RHEB. Overexpression of the RHEB p. Y35L variant in cultured cells also resulted in elevated S6 phosphorylation compared to wild-type RHEB. Importantly, in utero electroporation of the RHEB p.Y35L variant in mice induced S6 phosphorylation, cytomegalic neurons, dysregulated neuron migration, abnormal electroencephalogram, and seizures, all of which are found in patients with FCDII. Rapamycin treatment rescued abnormal electroencephalograms and alleviated seizures in these mice. These results demonstrate that brain somatic mutations in RHEB are also responsible for the pathogenesis of FCDII, indicating that aberrant activation of mTOR signaling is a primary driver and potential drug target for FCDII.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼