RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Prediction of Catenary Action Capacity of RC Beam-Column Substructures under a Missing Column Scenario Using Evolutionary Algorithm

        Iftikhar Azim,Jian Yang,Muhammad Farjad Iqbal,Zafar Mahmood,Muhammad Faisal Javed,Feiliang Wang,Qing-feng Liu 대한토목학회 2021 KSCE JOURNAL OF CIVIL ENGINEERING Vol.25 No.3

        Catenary action plays crucial role in resisting the applied vertical load at large deformations stage in reinforced concrete (RC) structures. This paper aims to predict the catenary action capacity of RC beam-column substructures by utilizing the distinctive properties of gene expression programming (GEP). The input parameters selected for the modelling are: double-beam span-to-depth ratio, relative axial restraints stiffness, relative rotational restraints stiffness, bottom and top longitudinal reinforcement ratios, and yield strength of longitudinal rebars. A comprehensive and reliable database was collated from internationally published research articles to develop and verify the model. The GEP-based model was assessed by comparing its performance with regression based model. Various statistical indicators and external validation criteria suggested in literature proved that the model is accurate and possess high prediction and generalization capacity. Sensitivity analysis was carried out to show the contributions of the input parameters, while parametric analysis was performed to show that the proposed model is not merely a combination of the input parameters but can accurately represent the given physical system. The proposed formulation from GEP is found to be simple, robust, and easy to utilize for pre-design purposes.

      • Marine bioactive peptides: Types, structures, and physiological functions

        Jo, Cheorun,Khan, Faisal Fareed,Khan, Muhammad Issa,Iqbal, Javed Informa UK (TaylorFrancis) 2017 Food reviews international Vol.33 No.1

        <P>Oceans are considered one of the richest sources of bioactive compounds. The extraction and utilization of marine peptides have attracted attention owing to their potential health benefits. They can be used in different functional and nutraceutical foods due to their antihypertensive, antioxidant, and antimicrobial properties. These bioactive peptides can be extracted from sponges, ascidians, seaweeds, and mollusks and reportedly have pharmacological properties. The objectives of this article are to provide an overview on the sources of marine bioactive peptides, a brief description of their extraction methods, and their biological activities and potential applications in functional foods and pharmaceuticals.</P>

      • KCI등재

        Assessment of Rheological and Piezoresistive Properties of Graphene based Cement Composites

        Sardar Kashif Ur Rehman,Zainah Ibrahim,Mohammad Jameel,Shazim Ali Memon,Muhammad Faisal Javed,Muhammad Aslam,Kashif Mehmood,Sohaib Nazar 한국콘크리트학회 2018 International Journal of Concrete Structures and M Vol.12 No.6

        The concrete production processes including materials mixing, pumping, transportation, injection, pouring, moulding and compaction, are dependent on the rheological properties. Hence, in this research, the rheological properties of fresh cement paste with different content of graphene (0.03, 0.05 and 0.10% by weight of cement) were investigated. The parameters considered were test geometries (concentric cylinders and parallel plates), shear rate range (300–0.6, 200–0.6 and 100–0.6 s<SUP>−1</SUP>), resting time (0, 30 and 60 min) and superplasticizer dosage (0 and 0.1% by weight of cement). Four rheological prediction models such as Modified Bingham, Herschel–Bulkley, Bingham model and Casson model were chosen for the estimation of the yield stress, plastic viscosity and trend of the flow curves. The effectiveness of these rheological models in predicting the flow properties of cement paste was verified by considering the standard error method. Test results showed that the yield stress and the plastic viscosity increased with the increase in graphene content and resting time while the yield stress and the plastic viscosity decreased with the increase in the dosage of superplasticizer. At higher shear rate range, the yield stress increased while the plastic viscosities decreased. The Herschel–Bulkley model with the lowest average standard error and standard deviation value was found to best fit the experimental data, whereas, Casson model was found to be the most unfitted model. Graphene reduces the flow diameter and electrical resistivity up to 9.3 and 67.8% and enhances load carrying capacity and strain up to 16.7 and 70.1% of the composite specimen as compared with plain cement specimen. Moreover, it opened a new dimension for graphene-cement composite as smart sensing building construction material.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼