RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Molecular Sexing and Taxonomic classification of Nigerian Guinea Fowl using Chromo Helicase DNA Binding Gene and 12S mitochondrial rRNA gene.

        Sola-Ojo, F.E,Afolabi-Balogun, N.B,Adeniyi C.A,Adeyemi, K.D,Ayorinde, K.L,Alli, O.I,Oni, O.A,Okeke, C.U,Momoh E.O,Adewara, J,Abdulkareem, I 한국동물유전육종학회 2021 한국동물유전육종학회지 Vol.5 No.2

        Sexing of birds at early age is very important for efficient selection and breeding; while characterization and taxonomic identification is relevant in conservation of birds’ genetic resources. This study used the genomic DNA of ten (10) guinea fowl keets to determine their sex using agarose gel electrophoresis and sequencing with chromo helicase DNA (CHD) binding genes, they were also characterize taxonomically using 12S rRNA mitochondria genes. The results of this study shows a double band (ZW) for females and a single band (W) for males under Agarose gel electrophoresis view, the Guinea fowl keets sequenced showed some deletions and were closer to Gallus_CHD12 in the phylogenetic tree. The Taxonomic classification result shows that the sequenced guineafowl keets were most related to the Numida meleagris 12S mitochondrial ribosomal RNA. This study corroborate the fact sex of guineafowl keet can be easily identified at genomic DNA level and they can be characterized taxonomically using the 12SrRNA mitochondrial genes.

      • KCI등재

        Scheffe’s Polynomial Optimisation of Laterite Concrete incorporating Periwinkle Shells and Coir

        Ocholuje S. Ogbo,Emmanuel Owoichoechi Momoh,Emmanuel E. Ndububa,Onesimus O. Afolayana,Sunday Onuche,Joseph O. Agada 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.9

        Recent emphases on minimising the carbon footprint of concrete have focused on the use of non-conventional materials for the production of low-cost concrete. Such materials include laterite, periwinkle shells and coir which have been reported as suitable for use as fine and coarse aggregate replacements in specified proportions. However, the use of two or more unconventional materials in a concrete mix would require significant experimental effort that is time- and resource-consuming and usually performed by trial and error to determine the optimum mix design. A popular optimisation technique used for concrete mix design is Scheffe’s second-degree polynomial modelling. However, the application of a more accurate Scheffe’s third-degree polynomial optimisation technique in designing cementitious composites incorporating unconventional aggregates is rare. This study, therefore, presents the use of Scheffe’s third-degree model to determine the optimum proportions of coir, laterite and periwinkle shell aggregates in a concrete mix in order to obtain the best mechanical properties of the hardened concrete. The constituents of the concrete were optimised for seven components of water, cement, fine-aggregate, laterite soil, coarse aggregate, periwinkle shell and coir on an N(7, 3) Sheffe’s factor space. The optimal mix ratio for compressive and flexural strengths of 11.33 and 1.20 MPa, respectively, was 0.5149, 1.044, 3.009, 0.126, 3.934, 0.054, and 0.0046 for pseudo-components Xi: {i = 1, 2 3, 4, 4, 6, 7}. The coefficients of determination (R2) were 98.74% and 98.53% for the compressive and flexural response models, respectively, while the p-values obtained for the response coefficient fit parameters βi, βij, βijk for (i = 1, 2, 3, 4, 5, 6, 7) were 96.77% and 91.49% for the compressive and flexural strength models, respectively. The optimised Low-Performance Concrete (LPC) is about 4% cheaper than LPC made from conventional aggregates and is adequate for patio slabs, pedestrian footpaths, kerbs, and floorings in residential buildings. The use of Sheffe’s third-degree model eliminates the significant experimental efforts needed in the design of concrete mixes incorporating unconventional aggregates.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼