RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Vancomycin Loaded Gelatin Microspheres Containing Wet Spun Poly(ε-caprolactone) Fibers and Films for Osteomyelitis Treatment

        Eda Ayse Aksoy,Betul Suyumbike Yagci,Gulseher Manap,Ipek Eroglu,Sukru Ozturk,Melike Ekizoglu,Kezban Ulubayram 한국섬유공학회 2019 Fibers and polymers Vol.20 No.11

        In this study, it was aimed to develop drug eluting biodegradable and biocompatible bone supportive fibers andfilms, which can locally be applicable on the infected bone defect area for osteomyelitis treatment. For this purpose,vancomycin (Vm) loaded gelatin (G) microspheres were prepared and dispersed into poly(ε-caprolactone) (PCL) solutionand then the suspension was processed as films and fibers by solvent casting and wet spinning techniques, respectively. Themean particle size distribution and morphology of Vm loaded G microspheres were characterized by laser diffraction methodand scanning electron microscopy, respectively. In vitro Vm release profiles and release kinetics from microsphere, fiber andfilm formulations were investigated. In vitro biodegradation properties of fiber and film formulations were examined in bothhydrolytic and enzymatic media during 25 days period. The cytotoxicity of Vm eluting films and fibers were tested on L929cells by MTT assay. Presence of PCL in film and fiber formulations retarded the release of Vm from microspheres andprovided long term sustained release. Vm eluting films and fibers exhibited strong antibacterial properties againstStaphylococcus aureus and Staphylococcus epidermidis.

      • KCI등재

        The Effect of Gamma Radiation Sterilization on Dental Biomaterials

        셀칸 터커,A.Yekta Özer,Burak Kutlu,Rahime Nohutcu,Arzu Sungur,Hasan Bilgili,Melike Ekizoglu,Meral Özalp 한국조직공학과 재생의학회 2014 조직공학과 재생의학 Vol.11 No.5

        Biomaterials are used in the field of bone and tissue engineering, orthopaedics and dentistry. Dental biomaterials including commercially available biodegradable materials act as physical barriers to help quicker healing while stimulating the regeneration of periodontal tissues, which is defined as Guided Tissue Regeneration (GTR). Amongst natural and synthetic biomaterials, collagen and aliphatic polyesters, such as polylactic acid (PLA) and poly (lactic-co-glycolic) acid (PLGA) are the most frequently used biomaterials for regenerative therapies due to their excellent biocompatibility and biodegradability. Due to their resorption in the body and interaction with biological systems, the GTR membranes must be sterile and pyrogen free. The sterility and apyrogenicity of the GTR membranes before human use is a regulatory requirement, however the sterilization of biomaterials is challenging due to the physicochemical changes and toxic residues with the commonly used sterilization techniques. The purpose of the present study was to evaluate the effect of gamma radiation and ethylene oxide sterilization on dental biomaterials with analytical, microbiological and histological examinations. PLGA-based GTR dental biomaterial is selected as the most gamma stable membrane according to the FTIR, DSC, TGA, and SEM results. This dental membrane was sterilized with ethylene oxide (EtO) and the effect of sterilization method on PLGA-based membrane was also investigated. Animal experiments were carried out to evaluate the regenerative properties and inflammatory responses of gamma and EtO sterilized PLGA-based GTR membrane after implantation. Histological examinations showed that resorption and bone formation of gamma sterilized PLGA-based GTR membrane was completed in 12 weeks without any inflammatory response; while only 60.095 ± 2.019% of new bone formation was observed with EtO sterilized one. Gamma sterilized PLGA membrane had significantly faster (P < 0.05) resorption and bone formation in comparison with EtO sterilization. In conclusion, the PLGA-based biomaterials could be sterilized safely and time- and cost-effectively with validated radiation doses for the tissue engineering applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼